What is the value of the floor function challenge?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary
SUMMARY

The value of the floor function for the series $$S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{80}}$$ is determined to be $$\left\lfloor{S}\right\rfloor$$. The series converges to a numerical value that can be approximated using numerical methods or calculus techniques. The discussion highlights the importance of understanding series and convergence in mathematical analysis.

PREREQUISITES
  • Understanding of series convergence
  • Familiarity with the floor function
  • Basic calculus concepts
  • Knowledge of numerical approximation techniques
NEXT STEPS
  • Explore numerical methods for approximating series sums
  • Study the properties of the floor function in mathematical analysis
  • Learn about convergence tests for infinite series
  • Investigate the harmonic series and its applications
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in series convergence and numerical analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$\left\lfloor{S}\right\rfloor$$ if $$S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{80}}$$.
 
Mathematics news on Phys.org
anemone said:
Find $$\left\lfloor{S}\right\rfloor$$ if $$S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{80}}$$.

we have $\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{(\sqrt{k} + \sqrt{k +1} )} = 2(\sqrt{k+1} - \sqrt{k})$
hence adding above from k 1 to 80 we get $S > 2 * (\sqrt(81) -1) = 16$
also
$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} < \frac{2}{\sqrt{k} + \sqrt{k - 1 }} = 2(\sqrt{k } - \sqrt{k-1})$
adding above from 1 to 80 we get $S < 2\sqrt{80}$ and $\sqrt{80} > 8.5$ because $8.5^2= 72.25$ so $S < 17$
so integral part is 16
 
kaliprasad said:
we have $\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{(\sqrt{k} + \sqrt{k +1} )} = 2(\sqrt{k+1} - \sqrt{k})$
hence adding above from k 1 to 80 we get $S > 2 * (\sqrt(81) -1) = 16$
also
$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} < \frac{2}{\sqrt{k} + \sqrt{k - 1 }} = 2(\sqrt{k } - \sqrt{k-1})$
adding above from 1 to 80 we get $S < 2\sqrt{80}$ and $\sqrt{80} > 8.5$ because $8.5^2= 72.25$ so $S < 17$
so integral part is 16

Well done, kaliprasad!(Cool)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K