MHB What is the value of the floor function challenge?

Click For Summary
The discussion centers on calculating the value of the floor function for the sum S, defined as S=1+1/√2+1/√3+...+1/√80. Participants are tasked with finding the integer part of this sum, denoted as ⌊S⌋. The challenge highlights the mathematical interest in series involving square roots and their convergence properties. Acknowledgment is given to kaliprasad for their contribution to the discussion. The challenge emphasizes the educational value of exploring mathematical functions and their applications.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$\left\lfloor{S}\right\rfloor$$ if $$S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{80}}$$.
 
Mathematics news on Phys.org
anemone said:
Find $$\left\lfloor{S}\right\rfloor$$ if $$S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{80}}$$.

we have $\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{(\sqrt{k} + \sqrt{k +1} )} = 2(\sqrt{k+1} - \sqrt{k})$
hence adding above from k 1 to 80 we get $S > 2 * (\sqrt(81) -1) = 16$
also
$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} < \frac{2}{\sqrt{k} + \sqrt{k - 1 }} = 2(\sqrt{k } - \sqrt{k-1})$
adding above from 1 to 80 we get $S < 2\sqrt{80}$ and $\sqrt{80} > 8.5$ because $8.5^2= 72.25$ so $S < 17$
so integral part is 16
 
kaliprasad said:
we have $\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{(\sqrt{k} + \sqrt{k +1} )} = 2(\sqrt{k+1} - \sqrt{k})$
hence adding above from k 1 to 80 we get $S > 2 * (\sqrt(81) -1) = 16$
also
$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} < \frac{2}{\sqrt{k} + \sqrt{k - 1 }} = 2(\sqrt{k } - \sqrt{k-1})$
adding above from 1 to 80 we get $S < 2\sqrt{80}$ and $\sqrt{80} > 8.5$ because $8.5^2= 72.25$ so $S < 17$
so integral part is 16

Well done, kaliprasad!(Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K