MHB What is the value of the sum of reciprocals of the roots in a cubic equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
AI Thread Summary
The discussion focuses on finding the value of the sum of the reciprocals of the squares of the roots, specifically expressed as 1/p² + 1/q² + 1/r², for the cubic equations x³ + ax² - 4x + 3 = 0 and x³ + ax - 4x + 3 = 0. Participants are encouraged to solve these problems in terms of the parameter 'a'. The conversation highlights the collaborative effort in solving mathematical challenges, with positive reinforcement for contributions. Overall, the thread emphasizes problem-solving in cubic equations and the relationships between roots and coefficients. Engaging with challenging mathematical problems is encouraged.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p,\,q,\,r$ are roots of the equation $x^3+ax^2-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

We have (Vieta's formulas):
\begin{aligned}
p+q+r&=-a \\
pq+pr+qr&=-4 \\
pqr&=-3 \\
\end{aligned}

Define $A=pq, B=pr, C=qr$. Then:
\begin{array}{}
A+B+C&=&-4 \\
AB+AC+BC&=&pqr(p+q+r)&=&-3 \cdot -a &=& 3a \\
A^2+B^2+C^2 &=& (A+B+C)^2 - 2(AB+AC+BC) &=& (-4)^2 - 2\cdot 3a&=&16-6a
\end{array}

Therefore:
$$\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}
=\frac{(pq)^2 + (pr)^2 + (qr)^2}{(pqr)^2}
=\frac{A^2 + B^2 + C^2}{(-3)^2}
=\frac{16-6a}{9}$$
 
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

I think you mean $x^3+ax^2-4x+3= 0 $

if p, q ,r are roots of f(x) then 1/p,1/q. 1/r are roots of f(1/x) = 0

or $3x^3-4x^2+ax+1 = 0 $

so $(\frac{1}{p}+\frac{1}{q} + \frac{1}{r}) = 4/3$

$(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = a/3$

or hence $\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} = (\frac{1}{p}+\frac{1}{q} + \frac{1}{r})^2 – 2(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = \frac{16-6a}{9}$
 
Last edited:
Hey, the two of you are doing so great today by solving my two challenge problems in such a perfect and neat way! :o Well done!(Cool)

I am looking forward to see some challenging problems to play instead...(Wink)(Sun)
 
Hello, anemone!

\text{If }p,\,q,\,r\text{ are roots of the equation}
x^3+ax-4x+3=0,\,\text{find the value}
\text{of }\tfrac{1}{p^2}+\tfrac{1}{q^2}+\tfrac{1}{r^2}\, \text{ in terms of }a.
From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a & [1] \\ pq + qr + pr \:=\:\text{-}4 & [2] \\ pqr \:=\:\text{-}3 & [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}
 
Last edited by a moderator:
soroban said:
Hello, anemone!

From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a &amp; [1] \\ pq + qr + pr \:=\:\text{-}4 &amp; [2] \\ pqr \:=\:\text{-}3 &amp; [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}

Thanks for participating and well done, soroban! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top