MHB What is the value of the sum of reciprocals of the roots in a cubic equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p,\,q,\,r$ are roots of the equation $x^3+ax^2-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

We have (Vieta's formulas):
\begin{aligned}
p+q+r&=-a \\
pq+pr+qr&=-4 \\
pqr&=-3 \\
\end{aligned}

Define $A=pq, B=pr, C=qr$. Then:
\begin{array}{}
A+B+C&=&-4 \\
AB+AC+BC&=&pqr(p+q+r)&=&-3 \cdot -a &=& 3a \\
A^2+B^2+C^2 &=& (A+B+C)^2 - 2(AB+AC+BC) &=& (-4)^2 - 2\cdot 3a&=&16-6a
\end{array}

Therefore:
$$\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}
=\frac{(pq)^2 + (pr)^2 + (qr)^2}{(pqr)^2}
=\frac{A^2 + B^2 + C^2}{(-3)^2}
=\frac{16-6a}{9}$$
 
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

I think you mean $x^3+ax^2-4x+3= 0 $

if p, q ,r are roots of f(x) then 1/p,1/q. 1/r are roots of f(1/x) = 0

or $3x^3-4x^2+ax+1 = 0 $

so $(\frac{1}{p}+\frac{1}{q} + \frac{1}{r}) = 4/3$

$(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = a/3$

or hence $\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} = (\frac{1}{p}+\frac{1}{q} + \frac{1}{r})^2 – 2(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = \frac{16-6a}{9}$
 
Last edited:
Hey, the two of you are doing so great today by solving my two challenge problems in such a perfect and neat way! :o Well done!(Cool)

I am looking forward to see some challenging problems to play instead...(Wink)(Sun)
 
Hello, anemone!

\text{If }p,\,q,\,r\text{ are roots of the equation}
x^3+ax-4x+3=0,\,\text{find the value}
\text{of }\tfrac{1}{p^2}+\tfrac{1}{q^2}+\tfrac{1}{r^2}\, \text{ in terms of }a.
From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a & [1] \\ pq + qr + pr \:=\:\text{-}4 & [2] \\ pqr \:=\:\text{-}3 & [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}
 
Last edited by a moderator:
soroban said:
Hello, anemone!

From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a &amp; [1] \\ pq + qr + pr \:=\:\text{-}4 &amp; [2] \\ pqr \:=\:\text{-}3 &amp; [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}

Thanks for participating and well done, soroban! :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top