What is the value of the sum of reciprocals of the roots in a cubic equation?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
Click For Summary

Discussion Overview

The discussion revolves around finding the value of the sum of the reciprocals of the squares of the roots of a cubic equation, specifically in the context of the equations given by the participants. The focus is on expressing this sum in terms of a parameter, \(a\).

Discussion Character

  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • One participant asks for the value of \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}\) for the roots of the equation \(x^3+ax^2-4x+3=0\) in terms of \(a\).
  • Another participant presents a similar question but with a slight variation in the equation, \(x^3+ax-4x+3=0\), seeking the same sum of reciprocals of the squares of the roots.
  • Further posts reiterate the request for the same sum in the context of the second equation, maintaining the focus on expressing it in terms of \(a\).
  • One participant expresses appreciation for the contributions of others and invites more challenging problems, indicating a collaborative atmosphere.

Areas of Agreement / Disagreement

There is no consensus on the specific equations being discussed, as multiple variations are presented. The participants do not resolve which equation is the correct one for the problem at hand, leaving the discussion open-ended.

Contextual Notes

The discussion includes variations in the cubic equations presented, which may affect the interpretation of the problem. The assumptions regarding the equations and their roots are not fully explored or clarified.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p,\,q,\,r$ are roots of the equation $x^3+ax^2-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

We have (Vieta's formulas):
\begin{aligned}
p+q+r&=-a \\
pq+pr+qr&=-4 \\
pqr&=-3 \\
\end{aligned}

Define $A=pq, B=pr, C=qr$. Then:
\begin{array}{}
A+B+C&=&-4 \\
AB+AC+BC&=&pqr(p+q+r)&=&-3 \cdot -a &=& 3a \\
A^2+B^2+C^2 &=& (A+B+C)^2 - 2(AB+AC+BC) &=& (-4)^2 - 2\cdot 3a&=&16-6a
\end{array}

Therefore:
$$\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}
=\frac{(pq)^2 + (pr)^2 + (qr)^2}{(pqr)^2}
=\frac{A^2 + B^2 + C^2}{(-3)^2}
=\frac{16-6a}{9}$$
 
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

I think you mean $x^3+ax^2-4x+3= 0 $

if p, q ,r are roots of f(x) then 1/p,1/q. 1/r are roots of f(1/x) = 0

or $3x^3-4x^2+ax+1 = 0 $

so $(\frac{1}{p}+\frac{1}{q} + \frac{1}{r}) = 4/3$

$(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = a/3$

or hence $\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} = (\frac{1}{p}+\frac{1}{q} + \frac{1}{r})^2 – 2(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = \frac{16-6a}{9}$
 
Last edited:
Hey, the two of you are doing so great today by solving my two challenge problems in such a perfect and neat way! :o Well done!(Cool)

I am looking forward to see some challenging problems to play instead...(Wink)(Sun)
 
Hello, anemone!

\text{If }p,\,q,\,r\text{ are roots of the equation}
x^3+ax-4x+3=0,\,\text{find the value}
\text{of }\tfrac{1}{p^2}+\tfrac{1}{q^2}+\tfrac{1}{r^2}\, \text{ in terms of }a.
From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a & [1] \\ pq + qr + pr \:=\:\text{-}4 & [2] \\ pqr \:=\:\text{-}3 & [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}
 
Last edited by a moderator:
soroban said:
Hello, anemone!

From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a &amp; [1] \\ pq + qr + pr \:=\:\text{-}4 &amp; [2] \\ pqr \:=\:\text{-}3 &amp; [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}

Thanks for participating and well done, soroban! :)
 

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
3K