MHB What is the value of the sum of reciprocals of the roots in a cubic equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
Click For Summary
The discussion focuses on finding the value of the sum of the reciprocals of the squares of the roots, specifically expressed as 1/p² + 1/q² + 1/r², for the cubic equations x³ + ax² - 4x + 3 = 0 and x³ + ax - 4x + 3 = 0. Participants are encouraged to solve these problems in terms of the parameter 'a'. The conversation highlights the collaborative effort in solving mathematical challenges, with positive reinforcement for contributions. Overall, the thread emphasizes problem-solving in cubic equations and the relationships between roots and coefficients. Engaging with challenging mathematical problems is encouraged.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p,\,q,\,r$ are roots of the equation $x^3+ax^2-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

We have (Vieta's formulas):
\begin{aligned}
p+q+r&=-a \\
pq+pr+qr&=-4 \\
pqr&=-3 \\
\end{aligned}

Define $A=pq, B=pr, C=qr$. Then:
\begin{array}{}
A+B+C&=&-4 \\
AB+AC+BC&=&pqr(p+q+r)&=&-3 \cdot -a &=& 3a \\
A^2+B^2+C^2 &=& (A+B+C)^2 - 2(AB+AC+BC) &=& (-4)^2 - 2\cdot 3a&=&16-6a
\end{array}

Therefore:
$$\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}
=\frac{(pq)^2 + (pr)^2 + (qr)^2}{(pqr)^2}
=\frac{A^2 + B^2 + C^2}{(-3)^2}
=\frac{16-6a}{9}$$
 
anemone said:
If $p,\,q,\,r$ are roots of the equation $x^3+ax-4x+3=0$, find the value of $\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}$ in terms of $a$.

I think you mean $x^3+ax^2-4x+3= 0 $

if p, q ,r are roots of f(x) then 1/p,1/q. 1/r are roots of f(1/x) = 0

or $3x^3-4x^2+ax+1 = 0 $

so $(\frac{1}{p}+\frac{1}{q} + \frac{1}{r}) = 4/3$

$(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = a/3$

or hence $\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} = (\frac{1}{p}+\frac{1}{q} + \frac{1}{r})^2 – 2(\frac{1}{pq} + \frac{1}{qr} +\frac{1}{rp} ) = \frac{16-6a}{9}$
 
Last edited:
Hey, the two of you are doing so great today by solving my two challenge problems in such a perfect and neat way! :o Well done!(Cool)

I am looking forward to see some challenging problems to play instead...(Wink)(Sun)
 
Hello, anemone!

\text{If }p,\,q,\,r\text{ are roots of the equation}
x^3+ax-4x+3=0,\,\text{find the value}
\text{of }\tfrac{1}{p^2}+\tfrac{1}{q^2}+\tfrac{1}{r^2}\, \text{ in terms of }a.
From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a & [1] \\ pq + qr + pr \:=\:\text{-}4 & [2] \\ pqr \:=\:\text{-}3 & [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}
 
Last edited by a moderator:
soroban said:
Hello, anemone!

From Vieta's formulas: . \begin{array}{ccc}p + q + r \:=\:\text{-}a &amp; [1] \\ pq + qr + pr \:=\:\text{-}4 &amp; [2] \\ pqr \:=\:\text{-}3 &amp; [3] \end{array}

Square [2]:
. . (pq+qr+pr)^2 \:=\: (\text{-}4)^2

. . p^2q^2 + q^2r^2 + p^2r^2 + 2p^2qr + 2pq^2r + 2pqr^2 \:=\:16

. . p^2q^2+ q^2r^2+p^2r^2 + 2\underbrace{pqr}_{\text{-}3}\underbrace{(p+q+r)}_{\text{-}a} \:=\:16

. . p^2q^2+q^2<br /> r^2+p^2r^2 + 6a \:=\:16

. . p^2q^2+q^2r^2+p^2r^2 \:=\:16-6a .[4]Square [3]: .(pqr)^2 \:=\; (\text{-}3)^2 \quad\Rightarrow\quad p^2q^2r^2 \:=\:9 .[5]We have: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\; \frac{p^2q^2 + q^2r^2 + p^2r^2}{p^2q^2r^2}Substitute [4] and [5].

Therefore: .\frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2} \;=\;\frac{16-6a}{9}

Thanks for participating and well done, soroban! :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
3K