MHB What is the velocity of the jet?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Jet Velocity
Dustinsfl
Messages
2,217
Reaction score
5
A propeller plane and a jet travel 3000miles. The velocity of the plane is 1/3 the velocity of the jet. It takes the prop plane 10 hours longer to complete the trip. What is the velocity of the jet.

Let \(\mathbf{v} = \frac{dx}{dt}\) and \(dx = 3000\). The \(dt = t - t_0\). We can always let \(t_0 = 0\) so \(\mathbf{v}_{\text{jet}} = \frac{3000}{t_{\text{jet}}}\). It appears that the information about the prop plane is unnecessary or can I use that information to determine \(t_{\text{jet}}\)?

We know that \(\mathbf{v}_{\text{prop}} = \frac{1}{3}\mathbf{v}_{\text{jet}}\) and the time require is \(t_{\text{prop}} = t_{\text{jet}} + 10\).
 
Mathematics news on Phys.org
Letting the velocity of the jet be $v$ and observing that both planes travel the same distance $d$, we may write:

$$d=vt=\frac{v}{3}(t+10)$$

For $0<d$, we must have $0<v$, and so we may divide through by $v$ to obtain:

$$t=\frac{t+10}{3}\implies t=5$$

Hence:

$$v=\frac{d}{5}$$
 
dwsmith said:
A propeller plane and a jet travel 3000miles. The velocity of the plane is 1/3 the velocity of the jet. It takes the prop plane 10 hours longer to complete the trip. What is the velocity of the jet.

Let \(\mathbf{v} = \frac{dx}{dt}\) and \(dx = 3000\). The \(dt = t - t_0\). We can always let \(t_0 = 0\) so \(\mathbf{v}_{\text{jet}} = \frac{3000}{t_{\text{jet}}}\). It appears that the information about the prop plane is unnecessary or can I use that information to determine \(t_{\text{jet}}\)?
"v_{\text{jet}}= \frac{3000}{t_{text}} is a formula for the speed of the jet. This problem is asking for a specific numerical answer.

We know that \(\mathbf{v}_{\text{prop}} = \frac{1}{3}\mathbf{v}_{\text{jet}}\) and the time require is \(t_{\text{prop}} = t_{\text{jet}} + 10\).
I would write, rather, that the time is \frac{3000}{v_{\text{jet}}}. The time required for the prop plane to fly 3000 mi would be \frac{3000}{v_{\text{prop}}}= \frac{3000}{\frac{1}{3}v_{\text{jet}}}= \frac{9000}{v_{\text{jet}}} and that is 10 hours more than the time required for the jet:
\frac{3000}{v_{\text{jet}}}= \frac{9000}{v_{\text{jet}}}- 10.

Solve that equation.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top