MHB What is the velocity vector after a pinball bounces off a baffle?

WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,

A pinball moving in a plane with velocity s bounces (in a purely elastic impact) from a baffle whose endpoints are p and q. What is the velocity vector after the bounce?

I don't understand how to answer this question? Any math help, hint or even correct answer will be accepted?
 
Physics news on Phys.org
Use vectors addition and elastic collision concept that velocity along the baffle will remain unchanged and velocity perpendicular to baffle will get reversed.
 
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
 
Country Boy said:
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
Hi,

Author has given the following answer to this question. Would you tell me how does the highlighted terms relate to velocity before and after the bounce?

1624939118433.png
 
A vector $u = u_x + u_y $ you can write a vector as a sum of its components.
$(s. \hat{u} ) $ represents the magnitude of the component of vector s along baffle and if you multiply by unit vector $\hat{u}$ you get vector component of s along with the baffle similarly $(s. \hat{v})$ represents the magnitude of the component of vector s normal to baffle and again if you multiply by unit vector $\hat{v}$ you will get vector component of s normal to baffle.
For reflected ray normal gets reversed so the normal vector is expressed with the negative sign there.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
9
Views
2K