MHB What is the velocity vector after a pinball bounces off a baffle?

WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,

A pinball moving in a plane with velocity s bounces (in a purely elastic impact) from a baffle whose endpoints are p and q. What is the velocity vector after the bounce?

I don't understand how to answer this question? Any math help, hint or even correct answer will be accepted?
 
Physics news on Phys.org
Use vectors addition and elastic collision concept that velocity along the baffle will remain unchanged and velocity perpendicular to baffle will get reversed.
 
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
 
Country Boy said:
You can always set up a coordinate with P as origin and Q= (0, 1). The velocity vector of this object can be written $(v_x, v_y)$ in that coordinate system. After an elastic collision with PQ, it's velocity vector is $(-v_x, v_y)$.
Hi,

Author has given the following answer to this question. Would you tell me how does the highlighted terms relate to velocity before and after the bounce?

1624939118433.png
 
A vector $u = u_x + u_y $ you can write a vector as a sum of its components.
$(s. \hat{u} ) $ represents the magnitude of the component of vector s along baffle and if you multiply by unit vector $\hat{u}$ you get vector component of s along with the baffle similarly $(s. \hat{v})$ represents the magnitude of the component of vector s normal to baffle and again if you multiply by unit vector $\hat{v}$ you will get vector component of s normal to baffle.
For reflected ray normal gets reversed so the normal vector is expressed with the negative sign there.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top