We may not have craft that can visit other planets but we do know enough chemistry and physics to have intelligent speculation. Also there is a lack of any electromagnetic emissions as evidence of other intelligent life (SETI). Hardly teeming.
For example---
http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980221b.html
Scientists have occasionally speculated that life could be based on an element other than carbon. Silicon, being the lightest element with an electronic structure analogous to that of carbon (having a half-filled outer shell with 4 unpaired electrons), is the most likely candidate mentioned. However, carbon's tendency to form the long chains and rings that form the basis for organic compounds that at some level of complexity begin to self-replicate is unique. Also, because older stars naturally produce carbon, along with nitrogen and oxygen (its neighbors on the periodic table), it is relatively abundant in the universe. Many astrophysicists who study the spectra of stars believe that complex chains and even rings of carbon appear in such unlikely places as stellar envelopes (e.g., in the form of PAHs, polycyclic aromatic hydrocarbons). When such compounds reach cooler regions of space where they can bond with readily available hydrogen, organic compounds as we know them are naturally formed.
Although other elements may form complex, covalently bonded structures, none has the rich molecular variety of carbon. It is the chemistry of carbon that allows us to consider the possibility of life "as we know it" in other parts of the Galaxy and the Universe beyond. We do not know whether Earth-like conditions exist elsewhere; but if they do, it is highly likely that life forms, if they exist, will be based on carbon.
One more point: The organic types of structures appearing in stellar envelopes are very hot and probably stripped of hydrogen, so that they are not themselves alive; it is only when carried off to a more hospitable environment, such as a much cooler planet 100 million miles away or so, that the kind of chemistry required by life becomes possible on a scale large enough to allow for stable development and replication. Water is also a factor, causing the hydrophobic proteins to clump together at all, and serving as a medium a conduit for new material, protection from temperature changes and harmful stellar radiation, etc.
Mark Kowitt and Damian Audley
for Ask a High-Energy Astronomer.