What to include on a first elementary number theory course?

Click For Summary
SUMMARY

The discussion focuses on essential topics for a first course in elementary number theory for second-year undergraduates with a minimum background in proof. Key topics recommended include modular arithmetic, rational approximations, and the transcendental nature of π. The book "An Introduction to Number Theory" by Graham Everest and Thomas Ward is suggested as a valuable resource, along with "Roots to Research: A Vertical Development of Mathematical Problems" by J.D. Sally and P.J. Sally, Jr. The discussion also touches on the complexities of incorporating public-key cryptography into the curriculum.

PREREQUISITES
  • Basic understanding of mathematical proofs
  • Familiarity with modular arithmetic
  • Knowledge of rational approximations
  • Introductory concepts in cryptography
NEXT STEPS
  • Research "modular arithmetic" techniques and applications
  • Explore "An Introduction to Number Theory" by Graham Everest and Thomas Ward
  • Study "Roots to Research: A Vertical Development of Mathematical Problems" by J.D. Sally and P.J. Sally, Jr.
  • Investigate the principles of public-key cryptography and its relation to number theory
USEFUL FOR

Mathematics educators, undergraduate students in mathematics, and anyone interested in teaching or learning elementary number theory effectively.

matqkks
Messages
282
Reaction score
6
I have to teach a course in elementary number theory next academic year. What topics should be included on a first course in this area? What is best order of doing things? The students have a minimum background in proof but this is a second year undergraduate module.
I am looking for applications which will motivate the student in this subject.
Are there good resources on elementary number theory?
 
Mathematics news on Phys.org
I like chapter 4 "Rational Approximations" from the book "Roots to Research: A Vertical Development of Mathematical Problems" by J.D. Sally and P.J. Sally, Jr. It can be downloaded from the AMS site by clicking on the "Preview Material". The book description says that it is for students of all levels starting from high school. I myself studied this material as an undergraduate, but also in a university-preparatory school.

Another interesting topic that touches number theory is squaring the circle. It took us a third of a semester during the fourth year in college to cover the theorem that $\pi$ is transcendental, so this fact should probably be given without a proof. However, it is interesting why every line segment built from a segment of length 1 using only compass and straightedge has an algebraic length. I don't think I have ever studied a rigorous proof. However, this may be more of a geometrical than number-theoretical theorem.

Finally, I would look at public-key cryptography, but I don't know if it is possible to omit enough details to make it into both an accessible and a rigorous course.
 
Fernando Revilla said:
Perhaps the the following book by Graham Everest and Thomas Ward will provide you good ideas

An Introduction to Number Theory
From the title page:

"An Introduction to
Number Theory

With 16 Figures"

I wanted to exclaim, "Yeah, this is not geometry, baby! You should be happy with just a handful of pictures". (Smile) Also, the beginning of "Alice in Wonderland" comes to mind.

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, `and what is the use of a book,' thought Alice `without pictures or conversation?'
 
Evgeny.Makarov said:
Finally, I would look at public-key cryptography, but I don't know if it is possible to omit enough details to make it into both an accessible and a rigorous course.

I don't think so. It's fun and all as an example of applications of number theory but without computational complexity theory and an actual course in cryptography the students are going to be lost. Cryptography needs its own separate course IMHO

Also, on topic: modular arithmetic. The single most important tool. No elementary number theory course is complete without it.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K