What values of tan alpha and tan beta satisfy a trigonometric inequality?

Click For Summary
SUMMARY

The discussion focuses on the trigonometric inequality involving angles alpha and beta, specifically proving that for \(0 < \alpha, \beta < \frac{\pi}{2}\), the inequality \(\frac{1}{\cos^2 \alpha} + \frac{1}{\sin^2 \alpha \sin^2 \beta \cos^2 \beta} \geq 9\) holds true. The equality condition is met when \(\tan \alpha = \sqrt{2}\) and \(\tan \beta = 1\), which occurs when \(\sin \alpha = \sqrt{\frac{2}{3}}\) and \(\sin(2\beta) = 1\). This establishes the specific values of tangent that satisfy the inequality.

PREREQUISITES
  • Understanding of trigonometric functions and identities
  • Familiarity with inequalities in mathematics
  • Knowledge of the sine and cosine functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of trigonometric inequalities in detail
  • Learn about the derivation and applications of the sine and cosine rules
  • Explore advanced topics in trigonometric identities and their proofs
  • Investigate the implications of the tangent function in various mathematical contexts
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching trigonometric concepts, and anyone interested in solving inequalities involving trigonometric functions.

Albert1
Messages
1,221
Reaction score
0
$0<\alpha < \dfrac {\pi}{2}$
$0<\beta < \dfrac {\pi}{2}$
prove:
$(1): \,\, \dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geq 9 $
determine the values of $ \tan \alpha$ and $ \tan \beta $ when :
$(2): \: \dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} =9 $
 
Physics news on Phys.org
[sp]Let $x = \sin^2\alpha$, $y = \sin^2(2\beta) = 4\sin^2\beta\cos^2\beta.$ Then $0\leqslant x\leqslant 1$ and $0\leqslant y\leqslant 1.$ The inequality $\dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geqslant 9$ becomes $\dfrac1{1-x} + \dfrac4{xy} \geqslant 9$, or $$\dfrac4y \geqslant 9x - \frac x{1-x} = \frac{8x-9x^2}{1-x} = \frac{4(1-x) - (3x-2)^2}{1-x} = 4 - \frac{(3x-2)^2}{1-x}.$$ The left side is clearly $\geqslant4$ and the right side is clearly $\leqslant 4.$ So the inequality is satisfied, with equality only if $x = 2/3$ and $y=1$. That occurs when $\sin\alpha = \sqrt{2/3}$ (so $\tan\alpha = \sqrt2$) and $\sin(2\beta)=1$ (so $\tan\beta = 1$).[/sp]
 
Opalg said:
[sp]Let $x = \sin^2\alpha$, $y = \sin^2(2\beta) = 4\sin^2\beta\cos^2\beta.$ Then $0\leqslant x\leqslant 1$ and $0\leqslant y\leqslant 1.$ The inequality $\dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geqslant 9$ becomes $\dfrac1{1-x} + \dfrac4{xy} \geqslant 9$, or $$\dfrac4y \geqslant 9x - \frac x{1-x} = \frac{8x-9x^2}{1-x} = \frac{4(1-x) - (3x-2)^2}{1-x} = 4 - \frac{(3x-2)^2}{1-x}.$$ The left side is clearly $\geqslant4$ and the right side is clearly $\leqslant 4.$ So the inequality is satisfied, with equality only if $x = 2/3$ and $y=1$. That occurs when $\sin\alpha = \sqrt{2/3}$ (so $\tan\alpha = \sqrt2$) and $\sin(2\beta)=1$ (so $\tan\beta = 1$).[/sp]
nice solution (Yes)
 

Similar threads

Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
46
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K