MHB What values of tan alpha and tan beta satisfy a trigonometric inequality?

AI Thread Summary
The discussion focuses on proving the trigonometric inequality involving angles alpha and beta, specifically that (1) the expression (1/cos²α) + (1/(sin²α sin²β cos²β)) is greater than or equal to 9. It is established that equality holds when sin²α equals 2/3 and sin(2β) equals 1, leading to the values tanα = √2 and tanβ = 1. The transformation of variables to x = sin²α and y = sin²(2β) simplifies the inequality, confirming that the left side is always greater than or equal to 4 while the right side is capped at 4. This analysis concludes that the specified values of tanα and tanβ satisfy the given trigonometric inequality.
Albert1
Messages
1,221
Reaction score
0
$0<\alpha < \dfrac {\pi}{2}$
$0<\beta < \dfrac {\pi}{2}$
prove:
$(1): \,\, \dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geq 9 $
determine the values of $ \tan \alpha$ and $ \tan \beta $ when :
$(2): \: \dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} =9 $
 
Mathematics news on Phys.org
[sp]Let $x = \sin^2\alpha$, $y = \sin^2(2\beta) = 4\sin^2\beta\cos^2\beta.$ Then $0\leqslant x\leqslant 1$ and $0\leqslant y\leqslant 1.$ The inequality $\dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geqslant 9$ becomes $\dfrac1{1-x} + \dfrac4{xy} \geqslant 9$, or $$\dfrac4y \geqslant 9x - \frac x{1-x} = \frac{8x-9x^2}{1-x} = \frac{4(1-x) - (3x-2)^2}{1-x} = 4 - \frac{(3x-2)^2}{1-x}.$$ The left side is clearly $\geqslant4$ and the right side is clearly $\leqslant 4.$ So the inequality is satisfied, with equality only if $x = 2/3$ and $y=1$. That occurs when $\sin\alpha = \sqrt{2/3}$ (so $\tan\alpha = \sqrt2$) and $\sin(2\beta)=1$ (so $\tan\beta = 1$).[/sp]
 
Opalg said:
[sp]Let $x = \sin^2\alpha$, $y = \sin^2(2\beta) = 4\sin^2\beta\cos^2\beta.$ Then $0\leqslant x\leqslant 1$ and $0\leqslant y\leqslant 1.$ The inequality $\dfrac{1}{ \cos^2 \alpha}+ \dfrac {1}{ \sin^2 \alpha \, \sin^2 \beta \, \cos^2 \beta} \geqslant 9$ becomes $\dfrac1{1-x} + \dfrac4{xy} \geqslant 9$, or $$\dfrac4y \geqslant 9x - \frac x{1-x} = \frac{8x-9x^2}{1-x} = \frac{4(1-x) - (3x-2)^2}{1-x} = 4 - \frac{(3x-2)^2}{1-x}.$$ The left side is clearly $\geqslant4$ and the right side is clearly $\leqslant 4.$ So the inequality is satisfied, with equality only if $x = 2/3$ and $y=1$. That occurs when $\sin\alpha = \sqrt{2/3}$ (so $\tan\alpha = \sqrt2$) and $\sin(2\beta)=1$ (so $\tan\beta = 1$).[/sp]
nice solution (Yes)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top