What Went Wrong in This Differentiation Puzzle?

  • Context: Undergrad 
  • Thread starter Thread starter pbandjay
  • Start date Start date
  • Tags Tags
    Differentiation Error
Click For Summary
SUMMARY

The discussion revolves around a differentiation puzzle involving the equation x = 1 + 1 + ... + 1 (x times). The key error identified is in the differentiation process, particularly when treating x as a limit in the summation. The participants conclude that the expression is only valid for non-negative integers, and thus not differentiable for all real numbers. They emphasize the need to redefine the summation for non-integer values to properly differentiate the function.

PREREQUISITES
  • Understanding of basic calculus concepts, specifically differentiation.
  • Familiarity with summation notation and its implications in calculus.
  • Knowledge of real number properties and differentiability conditions.
  • Experience with handling limits in mathematical expressions.
NEXT STEPS
  • Explore the concept of differentiability in real analysis.
  • Learn about the implications of summation notation in calculus.
  • Investigate how to define functions for non-integer values in calculus.
  • Study advanced differentiation techniques, including Leibniz's rule for differentiation under the integral sign.
USEFUL FOR

Mathematicians, calculus students, educators, and anyone interested in understanding the nuances of differentiation and summation in real analysis.

pbandjay
Messages
117
Reaction score
0
This is just a pretty simple "riddle" that I have always liked a lot. I didn't come up with it, I actually got it off of a website a few years ago. I'm sure for some of you, it won't be new, but here goes..

x = x
x = 1 + 1 + ... + 1 (x times)
x(x) = x(1 + 1 + ... + 1)
x2 = x + x + ... + x
D(x2) = D(x + x + ... + x)
D(x2) = D(x) + D(x) + ... + D(x)
2x = 1 + 1 + ... + 1 (x times)
2x = x
2 = 1

Uh oh! What's going on with that real number line?
 
Mathematics news on Phys.org
I'm going to take a stab at it.

I think the mistake came when you did the derivative. Since your differentiating with respect for x.

2x=(1+1+1 xtimes)+(x+x+x+x)
the ennd result after you take the derivative should be 2x=x+x not 2x=x
 
The problem arises when you take the derivative of

x+x+...+x

and get

1+1+...+1

You see, the 1+1+...+1 can be represented as a summation over j with limits 1 and x. But since you differentiate with respect to x, and x is one of the limits, you can't just differentiate the summand.
 
That is a cute one. :-p

But... (1 + 1 + ... + 1) "x times"?
The right hand side is only defined for non-negative integer values of x.
How can you write the symbol 1 "x times" when x is 1.5, or square root of 2, or pi? How can you add 1 to itself "x times" when x is pi? If you cannot define this for all real numbers, then the function is not from R to R and is therefore not differentiable (in the sense of real functions.)
We see the problem more clearly if we differentiate earlier in the process:
x = 1 + 1 + ... + 1
D(x)=D(1 + 1 + ... + 1)
1 = D(1) + D(1) + ... + D(1)
1 = 0

You must be able to effectively compute the action 1 + 1 + ... + 1 "x times".
You could try to defined it for non integer values.
But if you define it as meaning x, that is
1 + 1 + ... + 1 "x times" = x,
then that is the effective form that we would differentiate. To take the derivative of this new version we would first need to write it in its effective form. So, in this case we get D(1 + 1 + ... + 1 "x times") = D(x) = 1 by definition.
 
For fun abuse of notation,

D(x + x + ... + x (x times)) = (1 + 1 + ... + 1) (x times) + (x + x + ... + x) D(x times)
 
Hurkyl said:
For fun abuse of notation,

D(x + x + ... + x (x times)) = (1 + 1 + ... + 1) (x times) + (x + x + ... + x) D(x times)

:approve: Which, of course, we have D(x times) = (1 times), so...

D(x + x + ... + x (x times)) = (1 + 1 + ... + 1) (x times) + (x + x + ... + x) D(x times)=

(1 + 1 + ... + 1) (x times) + (x + x + ... + x)(1 times)= x + (x) = 2x
 
Haha I should have known you all would have chopped this up so quickly! The reason I like this one so much is because it is very easy to remember, too.
 
so I'm just wondering. was what i posted right? lol :p

I haven't done this stuff in like 2 years nearly.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K