Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What would a time machine look like?

  1. Apr 15, 2009 #1

    Since we know that time travel is possible, what would the time machines look like? How large would it be? For the moment, im not concerned with how it would be powered to bring it up to a speed fast enough , but construction wise what would it look like? will be like a cylinderical tube? or a small room? or a space just small enough to fit a human?
  2. jcsd
  3. Apr 15, 2009 #2
    I'm going to stop you right there...
  4. Apr 15, 2009 #3
    Am i wrong? I thought if you travel at the speed of light in a circle and come to a halt where the circle started, you would have moved forward in time. Is this wrong?
  5. Apr 15, 2009 #4
    Yes, actually. Massive objects can never be accelerated to the speed of light, for starters (see the many discussions here and elsewhere on special relativity for me on that). But also rather significantly, I assume, when you say "in a circle" you at least mean a closed loop in spacetime. Timelike loops are forbidden by causality in special and general relativity, meaning no time travel.

    If you are interested in models of cosmology that allow for 'time travel' (and still, being good physics, preserve causality), then look into Godel universes or other topologically nontrivial spacetimes. This still does not allow for 'time machines' though, just a structure of spacetime that could, in theory, allow one travel 'backwards' in time. None of these models are actually viable for a universe with matter, really... and almost all relativist throw out any spacetime that allows for those closed timelike loops like you want, for being unphysical (and very unlike the universe we perceive).
  6. Apr 15, 2009 #5


    User Avatar
    Science Advisor

    I'm moving forward in time right now, using this device:

  7. Apr 15, 2009 #6
    Hahaha, I read the original post as moving backwards in time. Yes, a time machine to move forward in time can look... pretty much like whatever you want lol
  8. Apr 15, 2009 #7
    I was wondering how i could have got it so wrong. I should have mentioned this in the first post. Yes i was talking about a time machine that travels into the future.

    Ok so as long as the machine can be accelerated fast enough, it could look like a room, a house, a car, a coffin or any number of enclosed spaces?
  9. Apr 15, 2009 #8
    No, no, you are still very incorrect if you mean 'travel into the future faster than you would be doing otherwise'.
  10. Apr 15, 2009 #9
    Oh, so no matter how fast you go, you would never travel into the future any faster than you would just sitting in your computer chair?
  11. Apr 15, 2009 #10


    User Avatar
    Science Advisor

    It doesn't need to be enclosed, if you don't mind the vacuum in space. :wink: If it accelerates you away and then back to the start point, you will have experienced less time, than the start point. So you would reach the future of the start point faster than waiting there.
  12. Apr 15, 2009 #11
    1. Causality is a consequence of physical laws (in the regions of relatively flat spacetime), but not an axiom
    2. AFAIK, closed timeloops do exist around kerr singularities
    3. Causality can be preserved in the timelike loops (Novikov's principle)
  13. Apr 15, 2009 #12


    User Avatar
    Gold Member

    Woah there fellas... you're barking up the wrong metaphor.

    What Jax is referring to is a relativistic shuttle.

    Head out to Sirius at .999c, turn around and come back at .999c and Earth will have aged significantly while you will have only aged a few years.

    He is correct that, using a space ship to travel at near the speed of light in a loop, you would effectively travel into Earth's future.

    Jax, you didn't have it wrong, it was just interpreted the wrong way - too many people thinking you were asking something other than what you were.

    And the answer is: it would look like a spaceship capable of sustaining its occupants for a few years or decades, with an engine capable of accelerating continually up to relativistic speeds, and carrying a nigh-unlimited supply of fuel.

    (Joe Haldeman used this in The Forever War, to have the heroine "wait" for centuries (Earth-time) while the hero "caught up with her").
    Last edited: Apr 15, 2009
  14. Apr 16, 2009 #13
    According to GR, there is massive time dilation around super compact objects such as neutron stars and black holes, if you were to hover near the event horizon of a large static BH where the tidal forces were small, the outside universe would appear to speed up and technically, once you leave the BH's gravitational field, you would have travelled into the future.

    But what about the ergoregion of a rotating black hole? Space is being dragged in the azimuth plane within this region faster than the speed of light and proper time according to Kerr metric which becomes zero at the static limit (the outer edge of the ergoregion) becomes negative between the static limit and event horizon, implying that maybe, if you entered the ergoregion and didn't fall into the black hole, you would travel faster than the speed of light relative to the outside universe, which, according to SR, seems to imply a different sort of time travel (i.e. into the past).
    Last edited: Apr 16, 2009
  15. Apr 16, 2009 #14
    Code (Text):
    Head out to Sirius at .999c, turn around and come back at .999c and Earth will have aged significantly while you will have only aged a few years.
    Thank you Dave. That is exactly what i was trying to say.

    Code (Text):
    with an engine capable of accelerating continually up to relativistic speeds
    That is my thought exactly. I really believe it is simply a matter of time before such a machine is built. If 2 assumptions are made, and they are not far fetched by any means, then it is absolutely possible to build a machine that will take ppl into the future. The 2 assumptions are:

    1] we can use a source of fuel that will be there for a very very very very long time ( the sun? )
    2] we build an engine with no wear and tear. ( future ion drives? )

    Code (Text):
    if you entered the ergoregion and didn't fall into the black hole, for what ever period of time you remained in there, you would travel faster than the speed of light relative to the outside universe, which, according to SR, seems to imply a different sort of time travel (i.e. into the past)
    I have been thinking about that exact same thing. But as far as our current understanding of light is, we cannot travel exceed the speed of light. But still, we know how (relatively) easy it is to travel into the future ( oh man imagine saying this 50 years ago... ). There HAS to be a way that is just as (relatively) easy to travel into the past. There JUST HAS TO BE.
  16. Apr 16, 2009 #15


    User Avatar
    Science Advisor

    Wouldn't someone have already traveled back in time to show us what one looks like?

    My guess would be: "Surprisingly similar to a DeLorean".
    Last edited: Apr 16, 2009
  17. Apr 16, 2009 #16


    User Avatar
    Science Advisor

    GR always reduced locally to SR for a freefalling observer (the equivalence principle), so nothing can ever travel faster than the speed of light in a local sense unless tachyons exist. The discussion of the ergosphere here suggests that when they say space is being dragged faster than the speed of light, they mean that even something moving at the speed of light in the direction opposite to the direction of rotation cannot mantain a fixed angle in whatever global coordinate system is normally used to describe rotating black holes. But I know physicists have analyzed the problem of where closed timelike curves (indicating backwards time travel) might occur, they definitely don't occur in the ergosphere although they could occur inside the inner event horizon if the Kerr solution is accurate (but the Kerr solution has questionable plausibility because there's infinite blueshift of infalling light on the boundary of the inner horizon). This is discussed briefly in the paragraph before section 3 (p. 12 of the PDF) of this paper by Kip Thorne:
    Last edited: Apr 16, 2009
  18. Apr 16, 2009 #17


    User Avatar
    Science Advisor

    In relativity objects don't really "travel" in either direction of time, they just have worldlines which represent their path through spacetime (similarly, if you draw a line or a curve on a piece of paper, it isn't really meaningful to ask if it's 'traveling up the page' or 'traveling down the page'). The idea of "backwards time travel" is represented by the idea of a worldline that actually curves around and intersects itself, like if you went back in time and shook hands with your younger self...this idea is known as a closed timelike curve, and although you can find theoretical examples of spacetimes that contain them, they all have features which make them questionable as spacetimes that could occur in reality (like the infinite energy on the boundary of the inner horizon of a rotating black hole, or the fact that the whole universe has to be rotating in the Godel metric), and there are also some arguments as to why a theory of quantum gravity (which it's thought that general relativity will turn out to be an approximation to) might remove these possibilities for closed timelike curves (for example see this article on how string theory, a popular candidate for a theory of quantum gravity, might eliminate closed timelike curves).
  19. Apr 16, 2009 #18
    Thank you, very interesting article.
    But the summary is "we dont know yet" :)
  20. Apr 16, 2009 #19
    A time machine would look like a double gimbaled gyroscope, spherical in shape, with a blond actress sitting in the middle. The gimbals are giant hoops, and as they spin around they make powerful wushing noises.
    Last edited: Apr 16, 2009
  21. Apr 16, 2009 #20

    My machine, probably an earlier, (or later?) mode,l makes a gnihsuw noise.
  22. Apr 16, 2009 #21


    Staff: Mentor

    AFAIK all of the GR "time machines" can only go back to when the time machine was built, and usually not that far.

  23. Apr 16, 2009 #22
    I have thought about that. Here is what i have. Tell me what you guys think.

    http://img26.imageshack.us/img26/3028/howtimetravelworks.jpg [Broken]

    Person A travels back in time, lets say to 2000 BC from 2000 AD. He travels from a timeline called "Time line 1". This timeline is what we are living in right now. If a person can travel back in time, he will go into the past of Timeline 1, but everything after that will change and a new timeline is created. The original timeline carries on, and no recorded appearance of Person A is found from the past. Person A has, through his time travel, created a different version of the timeline , Timeline 2. So the reason there were no recorded history of some traveller from the future is because Person A has created a second timeline simply by time travelling.

    Ofcourse, according to this, the implication is that once you travel back in time, you can never return back to Timeline 1 by traveling into the future. If Person A chooses to travel into the future, unless he/she has been extremely careful not to alter events too much ( as in , it is ok if the person decides to step on a few insects but not ok if the person decides to teach people about gravity in 2000 BC ), he/she will come to a future which maybe 99.99% similar to the 2000 AD of timeline 1 but it is NOT timeline 1. It is timeline 2.
    Last edited by a moderator: May 4, 2017
  24. Apr 16, 2009 #23
    Hi JesseM

    Thanks for the response. Are you saying that even though objects that enter a region where space is rotating faster than c, the object itself, relative to the outside universe, will never rotate faster than c and that space in the ergoregion 'rushes' past the object? The most influence being placed on the object is that it may approach a tangetial velocity of c (relative to infinity) as it reaches the horizon where the frame dragging rate increases to infinite.

    Also, proper radial velocity for a Kerr black hole is expressed-




    and [itex]M=Gm/c^2[/itex], [itex]a=J/mc[/itex]

    which again implies that proper radial velocity increases over c relative to infinity not only outside the event horizon but outside the ergoregion. I have some idea of the difference between radial and 'proper' radial velocity but what exactly is going on here?

    Regarding closed time-like curves, the reduced circumference [itex](\varpi)[/itex] in Kerr metric is expressed-

    [tex]\varpi^2=\frac{\Sigma^2 sin^2\theta}{\rho^2}[/tex]


    [tex]\Sigma^2=(r^2+a^2)^2-a^2\Delta sin^2\theta[/tex]

    and [itex]\Delta= r^{2}+a^{2}-2Mr[/itex]

    which doesn't deviate too much from the coordinate radius (r) until within the Cauchy horizon where it begins to diverge from r significantly and increase exponentially in close proximity of the ring singularity (where r=0 at the edge of the ring). This would give the impression that the reduced circumference would 'wrap round' the ring singularity, overlapping the original position. A simplistic view maybe but it does seem to suggest CTC's.
    Last edited: Apr 16, 2009
  25. Apr 16, 2009 #24


    User Avatar
    Science Advisor

    No, when I said things don't go faster than c, I referred specifically to a locally inertial frame--this is a term often used in discussions of the equivalence principle, it basically means you're zooming in on an infinitesimally small region of curved spacetime so the effects of curvature go to zero (at least to the first order). If you're comparing velocity in the ergosphere to velocity outside it then you're not dealing with a single local region, and the coordinate system you're using must be a non-inertial one. Even in flat SR spacetime, it's quite possible for things to travel faster than c in non-inertial coordinate systems, the light speed limit only applies to distance/time measured in the coordinates of an inertial frame.
    I don't know how the conclusion of CTCs inside the inner horizon is reached, but I would caution against reading too much into any coordinate-dependent statements like this, there are plenty of examples in GR of things that look really weird in one coordinate system but turn out to just be coordinate artifacts with no physical significance. For example, in the case of a nonrotating black hole spacetime, if you use Schwarzschild coordinates then it takes an infinite amount of coordinate time for anything to reach the horizon so it was once thought there was some sort of singularity there, but later physicists understood that this effect disappeared if you used other coordinate systems on the same spacetime (like Kruskal-Szekeres coordinates), and that it takes only a finite proper time for an infalling observer to reach the horizon, so there is no physical singularity at the horizon. CTCs are a coordinate-independent notion--geodesics that wrap around and intersect themselves--so I don't think you can conclude anything about whether they exist in a given region just by looking at the peculiarities of how a particular choice of coordinate system behaves in that region (and the coordinate system you're talking about may be the most convenient one to use for a rotating black hole, but it isn't the only possible one).
  26. Apr 16, 2009 #25


    User Avatar
    Science Advisor

    This is one possible way time travel could work, although more often physicists who speculate about such things imagine that if time travel was possible, there would just be a single self-consistent time travel in which nothing could be "changed", and any influences a time traveler had on the past would have been part of history all along (for example, you might travel back and start the Great Fire of London, in which case it was always true that you were the one who started it even before you went back). The idea that history is constrained to be consistent is sometimes called the "Novikov self-consistency principle", you can read about it here:


    It seems to me that while the "branching parallel universes" theory you mention doesn't give rise to any obvious paradoxes, there'd be a lot of ways in which the "rules" governing time travel would probably have to be sort of inelegant and arbitrary. A while ago I wrote up a few paragraphs on my problems with the idea, using the "Terminator" movie as an example (if you don't know the plot, all you need to know here is that in the movie's 2029 there's an evil computer called Skynet at war with humanity, it sends a 'terminator' robot back to 1984 to kill Sarah Connor, the future mother of John Connor, the leader of the human resistance in 2029; in response, John Connor sends back a soldier named Kyle Reese to stop the terminator in 1984).
    Last edited by a moderator: May 4, 2017
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook