What would be the Wigner-Seitz cell of this lattice?

Click For Summary
The Wigner-Seitz (WS) cell contains only one lattice point, requiring the tracing of bisectors to form an irregular shape. The discussion confirms that a fictitious point at the center of a non-primitive unit cell, represented by a hexagon, is valid. The dotted square is identified as a primitive unit cell, while the hexagon represents a non-primitive unit cell composed of multiple primitive cells. The irregular shape derived from bisectors is indeed the WS cell, which is the smallest unit cell encapsulating a single lattice point. Understanding these concepts is crucial for correctly identifying unit cells in lattice structures.
pepediaz
Messages
49
Reaction score
5
Homework Statement
Given the lattice shown in attempt to a solution, consider white circles are atoms (of the same type). What would be the Wigner-Seitz cell of this lattice?
Relevant Equations
Not actually
I know WS cell only contains one lattice point, so we would have to trace bisectors, and obtain some kind of irregular shape.

Anyways, I wanted to check if what I did is okay. It is considering a fictitious point as the center of the (non-primitive) unit cell, which would be one of those hexagons. I don't know if the dotted square would be a WS, or if I should obtain an irregular shape.
1644104300165.jpg
 
Physics news on Phys.org
Yes, what you have done is okay. The dotted square would be considered a primitive unit cell, while the hexagon would be a non-primitive unit cell. The non-primitive unit cell is made up of multiple primitive unit cells. The irregular shape you obtain when tracing bisectors is a Wigner Seitz cell and it is the smallest unit cell that contains only one lattice point.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
3
Views
5K