What would the slope of the force between 2 charged particles vs 1/r^2 give me?

Click For Summary
The discussion revolves around understanding the slope of a graph depicting the force between two charged particles as a function of distance, specifically in relation to the inverse square law (1/r^2). Participants seek clarification on what to plot on the y-axis and x-axis, along with their respective units. The gradient of the plot, defined as Δy/Δx, raises questions about how to determine the units for the slope in this context. Understanding these units is crucial for interpreting the physical significance of the slope. Clear definitions of the axes and their units are essential for accurate analysis.
dannolul
Messages
4
Reaction score
0
Homework Statement
A lab was performed by taking 2 charged particles at varying distances and measuring the force between them. (Dry data, and a graph of Fe vs 1/r^2 have been given.) Assume the charges are equal of magnitude. using the slope of the line and the value of coulomb's constant constant, calculate for the charge on one particle
Relevant Equations
Fe=(kq1q2)/(r^2)
I can get the slope of the line, but then I dont know what the slope is (units or whatever it is) then i get lost from there.
 
Physics news on Phys.org
What did you plot on the ##y## axis and in what units? What did you plot on the ##x## axis and in what units? If the gradient of a ##y##-versus-##x## plot is ##\Delta y/\Delta x## then can you determine the units in this case?
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
8K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K