What would the slope of the force between 2 charged particles vs 1/r^2 give me?

AI Thread Summary
The discussion revolves around understanding the slope of a graph depicting the force between two charged particles as a function of distance, specifically in relation to the inverse square law (1/r^2). Participants seek clarification on what to plot on the y-axis and x-axis, along with their respective units. The gradient of the plot, defined as Δy/Δx, raises questions about how to determine the units for the slope in this context. Understanding these units is crucial for interpreting the physical significance of the slope. Clear definitions of the axes and their units are essential for accurate analysis.
dannolul
Messages
4
Reaction score
0
Homework Statement
A lab was performed by taking 2 charged particles at varying distances and measuring the force between them. (Dry data, and a graph of Fe vs 1/r^2 have been given.) Assume the charges are equal of magnitude. using the slope of the line and the value of coulomb's constant constant, calculate for the charge on one particle
Relevant Equations
Fe=(kq1q2)/(r^2)
I can get the slope of the line, but then I dont know what the slope is (units or whatever it is) then i get lost from there.
 
Physics news on Phys.org
What did you plot on the ##y## axis and in what units? What did you plot on the ##x## axis and in what units? If the gradient of a ##y##-versus-##x## plot is ##\Delta y/\Delta x## then can you determine the units in this case?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top