What are the units for the slope in an Acceleration vs Mass Graph?

  • #1
guyvsdcsniper
264
37
Homework Statement
Using Quick graph, plot a graph of acceleration vs. ∆m, using the Part I data. Based on your analysis of the graph, what is the relationship between the mass difference and the acceleration of an Atwood’s machine? Do a linear best fit, and report the slope value (don’t forget the units).
Relevant Equations
a=m/s^2
m=kg
I am doing an Atwood Simulation lab. I am having trouble with this part of my lab that ask the question provided.

I can tell that the relationship is linear and that as the mass increases at a constant rate the acceleration increases.

Logger pro tells me that the slope is 31.43. I am having trouble thinking about what the units would be for the slope.

Acceleration is m/s^2. Mass is in kg. I believe that since I have a fraction of a kilogram I would then have:
m/s^2 / 1/kg which would then give me N.
Is that correct? If not where am I going wrong

Screen Shot 2021-03-08 at 8.16.19 PM.png
 

Attachments

  • Screen Shot 2021-03-08 at 8.16.19 PM.png
    Screen Shot 2021-03-08 at 8.16.19 PM.png
    18.5 KB · Views: 210
  • Like
Likes Delta2
Physics news on Phys.org
  • #2
Units for the slope, y/x, will be (whatever the units are on the y axis)/(whatever the units are on the x axis).

Out of interest, what exactly is the set up in the experiment? For a typical set up of two masses hung either side of a pulley, and varying only one mass, the acceleration should not be a linear function of the mass difference.
 
  • Like
Likes guyvsdcsniper
  • #3
haruspex said:
Units for the slope, y/x, will be (whatever the units are on the y axis)/(whatever the units are on the x axis).

Out of interest, what exactly is the set up in the experiment? For a typical set up of two masses hung either side of a pulley, and varying only one mass, the acceleration should not be a linear function of the mass difference.

So it would m/kg*s^2? It just seems like such an odd unit I've never seen that before.

I've attached the instructions and my data for this part of the lab. Am I doing something wrong?
 

Attachments

  • Screen Shot 2021-03-08 at 10.50.13 PM.pdf
    284.6 KB · Views: 301
  • #4
quittingthecult said:
So it would m/kg*s^2? It just seems like such an odd unit I've never seen that before.

I've attached the instructions and my data for this part of the lab. Am I doing something wrong?
So in this experiment the combined mass is held constant. That explains why you get a straight line.
Yes, it would be m kg-1s-2. Don't worry about how odd it looks.
 
  • Like
Likes guyvsdcsniper
Back
Top