Undergrad What's the proof that R2 /(R+h) = (1 – 2h/R)

  • Thread starter Thread starter Karagoz
  • Start date Start date
  • Tags Tags
    Gravity Proof
Click For Summary
The discussion centers on the derivation of the formula for acceleration due to gravity at height h, expressed as g1 = g (1 – 2h/R). The transition from R^2 /(R+h)^2 to 1/(1 + h/R)^2 involves dividing both the numerator and denominator by R^2. The assumption that h is much smaller than R allows for the simplification using a Taylor series expansion, retaining only the first term. This leads to the final expression of (1 – 2h/R). Understanding these steps clarifies the mathematical reasoning behind the derivation.
Karagoz
Messages
51
Reaction score
5
TL;DR
When proving formula for acceleration due to gravity at height h – with derivation, there are some steps I don't understand.
Hi,

On this link: https://physicsteacher.in/2020/07/1...n-due-to-gravity-at-height-h-with-derivation/

They prove the formula for acceleration due to gravity at height h, which is: g1 = g (1 – 2h/R).

There are similar articles online.

When they go through the last steps, it shows something like this:

g1/g = R2 /(R+h)2

= 1/(1 + h/R)2 = (1 + h/R)-2 = (1 – 2h/R)

But I don't understand, how does one move from R^2 /(R+h)^2 to 1/(1 + h/R)^2 = (1 + h/R)^-2 and then to (1 – 2h/R)

Could someone explain what's happening there?
 
Physics news on Phys.org
The first step is simply to divide both numerator and denominator by R^2. In the second step, they have assumed that h<<R, so h/R <<1. You can then do a Taylor series expansion and keep only the first term in h/R.
 
  • Informative
  • Like
Likes Karagoz and berkeman
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K