I What's the proof that R2 /(R+h) = (1 – 2h/R)

  • Thread starter Thread starter Karagoz
  • Start date Start date
  • Tags Tags
    Gravity Proof
Click For Summary
The discussion centers on the derivation of the formula for acceleration due to gravity at height h, expressed as g1 = g (1 – 2h/R). The transition from R^2 /(R+h)^2 to 1/(1 + h/R)^2 involves dividing both the numerator and denominator by R^2. The assumption that h is much smaller than R allows for the simplification using a Taylor series expansion, retaining only the first term. This leads to the final expression of (1 – 2h/R). Understanding these steps clarifies the mathematical reasoning behind the derivation.
Karagoz
Messages
51
Reaction score
5
TL;DR
When proving formula for acceleration due to gravity at height h – with derivation, there are some steps I don't understand.
Hi,

On this link: https://physicsteacher.in/2020/07/1...n-due-to-gravity-at-height-h-with-derivation/

They prove the formula for acceleration due to gravity at height h, which is: g1 = g (1 – 2h/R).

There are similar articles online.

When they go through the last steps, it shows something like this:

g1/g = R2 /(R+h)2

= 1/(1 + h/R)2 = (1 + h/R)-2 = (1 – 2h/R)

But I don't understand, how does one move from R^2 /(R+h)^2 to 1/(1 + h/R)^2 = (1 + h/R)^-2 and then to (1 – 2h/R)

Could someone explain what's happening there?
 
Physics news on Phys.org
The first step is simply to divide both numerator and denominator by R^2. In the second step, they have assumed that h<<R, so h/R <<1. You can then do a Taylor series expansion and keep only the first term in h/R.
 
  • Informative
  • Like
Likes Karagoz and berkeman
Thread 'The rocket equation, one more time'
I already posted a similar thread a while ago, but this time I want to focus exclusively on one single point that is still not clear to me. I just came across this problem again in Modern Classical Mechanics by Helliwell and Sahakian. Their setup is exactly identical to the one that Taylor uses in Classical Mechanics: a rocket has mass m and velocity v at time t. At time ##t+\Delta t## it has (according to the textbooks) velocity ##v + \Delta v## and mass ##m+\Delta m##. Why not ##m -...

Similar threads

  • · Replies 16 ·
Replies
16
Views
871
  • · Replies 20 ·
Replies
20
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K