I know that if(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\sum_{n=-\infty}^{\infty} |n| |\hat{f}(n)| < \infty

[/tex]

then

[tex]

\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi i nx}

[/tex]

is continuously differentiable as a function of [itex]x[/itex].

Now I'm interested to know what kind of conditions exist for Fourier coefficients such that they guarantee the non-differentiability.

It is a fact that just because some abstract integral [itex]\int d\mu(x)\psi(x)[/itex] diverges, it doesn't mean that a limit of other integrals [itex]\lim_{n\to\infty} \int d\mu(x) \psi_n(x)[/itex] would diverge too, even when [itex]\psi_n\to\psi[/itex] point wisely. So this means that even if I know that

[tex]

\sum_{n=-\infty}^{\infty} |n| |\hat{f}(n)| = \infty

[/tex]

this will not obviously imply that

[tex]

\lim_{\delta\to 0} \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi inx} \frac{e^{2\pi in\delta} - 1}{\delta}

[/tex]

would diverge too.

What condition will suffice to prove that the Fourier series is not differentiable?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# When is fourier series non-differentiable?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - fourier series differentiable | Date |
---|---|

I Inverse Laplace to Fourier series | Oct 22, 2016 |

I Motivation for Fourier series/transform | Oct 17, 2016 |

I Question about Fourier series | Sep 19, 2016 |

I Fourier Series: I don't understand where I am wrong -- please help | Jun 16, 2016 |

I Is this even possible? Question about Fourier Series... | May 24, 2016 |

**Physics Forums - The Fusion of Science and Community**