Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

When is fourier series non-differentiable?

  1. Mar 29, 2010 #1
    I know that if

    \sum_{n=-\infty}^{\infty} |n| |\hat{f}(n)| < \infty


    \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi i nx}

    is continuously differentiable as a function of [itex]x[/itex].

    Now I'm interested to know what kind of conditions exist for Fourier coefficients such that they guarantee the non-differentiability.

    It is a fact that just because some abstract integral [itex]\int d\mu(x)\psi(x)[/itex] diverges, it doesn't mean that a limit of other integrals [itex]\lim_{n\to\infty} \int d\mu(x) \psi_n(x)[/itex] would diverge too, even when [itex]\psi_n\to\psi[/itex] point wisely. So this means that even if I know that

    \sum_{n=-\infty}^{\infty} |n| |\hat{f}(n)| = \infty

    this will not obviously imply that

    \lim_{\delta\to 0} \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi inx} \frac{e^{2\pi in\delta} - 1}{\delta}

    would diverge too.

    What condition will suffice to prove that the Fourier series is not differentiable?
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted