MHB When Should Parametric Equations Be Used to Calculate Curve Length?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Curve Length
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the arc length of
$$f (x)=(1/3)(x^2 +2)^{3/2}$$
On the interval [0, a]

The parametric I got

$$y=t$$
$$x=\sqrt{(3t)^{2/3}-2}$$

I proceeded but didnt get the answer of

$$a+\frac{a^3}{3}$$
 
Physics news on Phys.org
Re: Lenght of a curve

I wouldn't bother with parametrization...:)

We have:

$$f(x)=\frac{1}{3}\left(x^2+2\right)^{\frac{3}{2}}$$

Hence:

$$f'(x)=x\sqrt{x^2+2}$$

And so the arc-length $s$ will be given by:

$$s=\int_0^a\sqrt{1+\left(x\sqrt{x^2+2}\right)^2}\,dx$$

Can you proceed?
 
$$\displaystyle
s=\int_0^a\sqrt{1+\left(x\sqrt{x^2+2}\right)^2}\,dx
=\int_{0}^{a} \left({x}^{2}+1\right)\,dx
=\frac{a^3}{3}+a
$$

When do we use parametrics for length of curve
 
Last edited:
Back
Top