When Will the Object Be 15 Meters Above the Ground?

Click For Summary
SUMMARY

The discussion centers on the vertical motion of an object propelled upward with an initial velocity of 20 meters per second, described by the equation s = -4.9t² + 20t. The object reaches a height of 15 meters at approximately t = 0.99024 seconds and again at t = 3.0914 seconds before it strikes the ground. The acceleration due to gravity is acknowledged as approximately 9.81 m/s², with a practical approximation of 9.8 m/s² being sufficient for calculations.

PREREQUISITES
  • Understanding of quadratic equations
  • Familiarity with kinematic equations
  • Basic knowledge of projectile motion
  • Experience with mathematical software tools like Wolfram Alpha (W|A)
NEXT STEPS
  • Study the derivation and application of kinematic equations in physics
  • Learn how to solve quadratic equations using various methods
  • Explore the effects of different initial velocities on projectile motion
  • Investigate the role of gravitational acceleration in vertical motion
USEFUL FOR

Students studying physics, educators teaching kinematics, and anyone interested in understanding the principles of projectile motion and quadratic equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.2.1}$
An object is propelled vertically upward with an initial velocity of 20 meters per second.
The distance s (in meters) of the object from the ground after t seconds is
$s=-4.9t^2+20t$
(a) When will the object be 15 meters above the ground?
$15=-4.9t^2+20 \implies -4.9t^2 =-5$
ok there is no term b so decided not to use quadratic formula
so far...:unsure:
$49t^2=50$

(b) When will it strike the ground?
(c) Will the object reach a height of 100 meters
 
Physics news on Phys.org
karush said:
$\tiny{1.2.1}$
An object is propelled vertically upward with an initial velocity of 20 meters per second.
The distance s (in meters) of the object from the ground after t seconds is
$s=-4.9t^2+20t$
(a) When will the object be 15 meters above the ground?
$15=-4.9t^2+20 \implies -4.9t^2 =-5$
ok there is no term b so decided not to use quadratic formula
You dropped the t on the 20t term in going from [math]s = -4.9t^2 + 20t[/math] to [math]15 = -4.9t^2 + 20t[/math].

-Dan
 
.
 
Last edited:
topsquark said:
You dropped the t on the 20t term in going from [math]s = -4.9t^2 + 20t[/math] to [math]15 = -4.9t^2 + 20t[/math].

-Dan

$15 = -4.9t^2 + 20t
\implies 4.9t^2-20t+15=0
\implies 49t^2-200t+150=0$
kinda hefty for a quadratic equation so went to W|A
$t\approx 3.0914s$ probably this since it is going up
$t\approx 0.99024s $

it was tempting to just round off the 4.9 but think this how fast things fall
 
karush said:
$15 = -4.9t^2 + 20t
\implies 4.9t^2-20t+15=0
\implies 49t^2-200t+150=0$
kinda hefty for a quadratic equation so went to W|A
$t\approx 3.0914s$ probably this since it is going up
$t\approx 0.99024s $

it was tempting to just round off the 4.9 but think this how fast things fall
Mostly a good job. On the way up it passes 15 m at t = 0.099024 s. g is the acceleration due to gravity so it's how fast it is changing how fast it is falling. (Just call it an acceleration.. it's easier!)

Technically g is about 9.81 m/s^2 but the number locally is slightly different everywhere so it changes a bit. 9.8 m/s^2 is good enough.

-Dan
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
11
Views
2K