MHB When Will the Object Be 15 Meters Above the Ground?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.2.1}$
An object is propelled vertically upward with an initial velocity of 20 meters per second.
The distance s (in meters) of the object from the ground after t seconds is
$s=-4.9t^2+20t$
(a) When will the object be 15 meters above the ground?
$15=-4.9t^2+20 \implies -4.9t^2 =-5$
ok there is no term b so decided not to use quadratic formula
so far...:unsure:
$49t^2=50$

(b) When will it strike the ground?
(c) Will the object reach a height of 100 meters
 
Mathematics news on Phys.org
karush said:
$\tiny{1.2.1}$
An object is propelled vertically upward with an initial velocity of 20 meters per second.
The distance s (in meters) of the object from the ground after t seconds is
$s=-4.9t^2+20t$
(a) When will the object be 15 meters above the ground?
$15=-4.9t^2+20 \implies -4.9t^2 =-5$
ok there is no term b so decided not to use quadratic formula
You dropped the t on the 20t term in going from [math]s = -4.9t^2 + 20t[/math] to [math]15 = -4.9t^2 + 20t[/math].

-Dan
 
.
 
Last edited:
topsquark said:
You dropped the t on the 20t term in going from [math]s = -4.9t^2 + 20t[/math] to [math]15 = -4.9t^2 + 20t[/math].

-Dan

$15 = -4.9t^2 + 20t
\implies 4.9t^2-20t+15=0
\implies 49t^2-200t+150=0$
kinda hefty for a quadratic equation so went to W|A
$t\approx 3.0914s$ probably this since it is going up
$t\approx 0.99024s $

it was tempting to just round off the 4.9 but think this how fast things fall
 
karush said:
$15 = -4.9t^2 + 20t
\implies 4.9t^2-20t+15=0
\implies 49t^2-200t+150=0$
kinda hefty for a quadratic equation so went to W|A
$t\approx 3.0914s$ probably this since it is going up
$t\approx 0.99024s $

it was tempting to just round off the 4.9 but think this how fast things fall
Mostly a good job. On the way up it passes 15 m at t = 0.099024 s. g is the acceleration due to gravity so it's how fast it is changing how fast it is falling. (Just call it an acceleration.. it's easier!)

Technically g is about 9.81 m/s^2 but the number locally is slightly different everywhere so it changes a bit. 9.8 m/s^2 is good enough.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top