MHB Where can the water jet spray?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Jet Spray Water
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Consider a water jet that sprays from ground level on flat ground. The jet can spray at any angle $0<\theta<\pi$ along some horizontal axis, that is in one vertical plane. The jet sprays water at a velocity of $v_0$. Ignoring drag, find an equation that describes the boundary between where water can reach and where it cannot.
 
Mathematics news on Phys.org
Hi MarkFL,

I'm hoping to get some hint on how to at least start to work on the problem...:o
 
anemone said:
Hi MarkFL,

I'm hoping to get some hint on how to at least start to work on the problem...:o

Well, since you asked so nicely...sure no problem! (Sun)

Hint:

I would begin with the parametric equations of motion:

$$\tag{1}x=v_0\cos(\theta)t$$

$$\tag{2}y=-\frac{g}{2}t^2+v_0\sin(\theta)t$$

To eliminate the parameter $t$, we solve (1) for $t$ and substitute into (2) to get:

$$\tag{3}y=\tan(\theta)x-\frac{g}{2v_0^2\cos^2(\theta)}x^2$$

Using $$\frac{1}{ \cos^2(\theta)}= \sec^2(\theta)= \tan^2(\theta)+1$$ (3) becomes:

$$\tag{4}y=\tan(\theta)x-\frac{g}{2v_0^2}\left(\tan^2(\theta)+1 \right)x^2$$

Now, using the substitution:

$$u=\tan(\theta)$$

we get the parametrization:

$$\tag{5}y=ux-\frac{g}{2v_0^2}\left(u^2+1 \right)x^2$$

Now, let the boundary we seek be denoted by $$f(x)$$. What can we say about the intersection of $y$ and $f(x)$?
 
Solution:

Continuing from the hint I gave above, we will equate $y=f(x)$ and obtain the quadratic in $u$ in standard form:

$$u^2-\frac{2v_0^2}{gx}u+\left(1+\frac{2v_0^2f(x)}{gx^2} \right)=0$$

Because $y$ will only ever be tangent to $f(x)$ as it is the boundary, we know therefore that the discriminant must be zero, giving us:

$$\left(-\frac{2v_0^2}{gx} \right)^2-4\left(1+\frac{2v_0^2f(x)}{gx^2} \right)=0$$

$$\left(\frac{v_0^2}{gx} \right)^2=1+\frac{2v_0^2f(x)}{gx^2}$$

And then solving for $f(x)$, we find:

$$f(x)=-\frac{g}{2v_0^2}x^2+\frac{v_0^2}{2g}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top