MHB Where Does the $\frac{1}{2}$ in Step 3 Come From?

Click For Summary
The discussion focuses on the origin of the factor $\frac{1}{2}$ in the integration process involving trigonometric functions. It clarifies that when substituting $u = \sin(2x)$, the differential $du$ includes a factor of $\frac{1}{2}$ due to the chain rule. Participants also address a common mistake in substitution, emphasizing the importance of substituting the correct inner function. The integration of $\sin^3(x)$ is explored, with corrections made to the approach and final expressions derived. The conversation concludes with an affirmation of the correctness of the integration steps taken.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
https://www.physicsforums.com/attachments/5246
I'm trying to follow this example but where does the $\frac{1} {2 } $ come from in step 3
 
Physics news on Phys.org
They are letting:

$$u=\sin(2x)\implies \frac{1}{2}du=\cos(2x)\,dx$$

Does that make sense?
 
Sorta, So to get the 2 they multiplied by $\frac{1}{2}$
Letters me try one

$$\int\sin^3\left({x}\right) dx $$

$$\int\left(\sin^2\left({x}\right)\right)\left(\sin\left({x}\right)\right)dx
\implies \int\left(\cos^2\left({x}\right)-1\right) \left(\sin\left({x}\right)\right)dx $$

$$u=\sin\left({x}\right)\ \ \ du =\cos\left({x}\right)dx$$

So far?
 
Last edited:
karush said:
Sorta, So to get the 2 they multiplied by $\frac{1}{2}$
Letters me try one

$$\int\sin^3\left({x}\right) dx $$

$$\int\left(\sin^2\left({x}\right)\right)\left(\sin\left({x}\right)\right)dx
\implies \int\left(\cos^2\left({x}\right)-1\right) \left(\sin\left({x}\right)\right)dx $$

$$u=\sin\left({x}\right)\ \ \ du =\cos\left({x}\right)dx$$

So far?

You substituted the wrong function. You want to substitute whatever is INSIDE the composition, not what is outside, so you would want u = cos(x) and du = -sin(x) dx.

Also [sin(x)]^2 = 1 - [cos(x)]^2, not [cos(x)]^2 - 1...
 
$$\int\sin^3 \left({x}\right)dx
\implies \int\sin^2\left({x}\right)\sin\left({x}\right)dx
\implies\int\left(1-\cos^2 \left({x}\right)\right)\sin\left({x}\right)dx $$

$$u=\cos\left({x}\right)\ \ \ du=-\sin\left({x}\right)dx $$

$$-\int\left(1-{u}^{2}\right)du $$

I continued but didn't get this TI-Nspire answer

$$\left(\frac{-\sin^2 \left({x}\right)}{3}-\frac{2}{3}\right)\cos\left({x}\right)$$
 
karush said:
$$\int\sin^3 \left({x}\right)dx
\implies \int\sin^2\left({x}\right)\sin\left({x}\right)dx
\implies\int\left(1-\cos^2 \left({x}\right)\right)\sin\left({x}\right)dx $$

$$u=\cos\left({x}\right)\ \ \ du=-\sin\left({x}\right)dx $$

$$-\int\left(1-{u}^{2}\right)du $$

I continued but didn't get this TI-Nspire answer

$$\left(\frac{-\sin^2 \left({x}\right)}{3}-\frac{2}{3}\right)\cos\left({x}\right)$$

What you have done is correct, so keep going.
 
$$- \int 1 du + \int {u^{2 }} du $$

$$-u+\frac{{u}^{3}}{3}+C$$
 
So now put it back as a function of x. You should be able to see why the two answers are equivalent.
 
$$-\cos\left({x}\right)-\frac{\cos^3\left({x}\right)}{3}
\implies\left[-1-\frac{\cos^2 \left({x}\right)}{3}\right]\cos\left({x}\right)
\implies\left[\frac{-3+1+\sin^2 \left({x}\right)}{3}\right]\cos\left({x}\right)$$

Thus

$$\left[\frac{-\sin^2 \left({x}\right)}{3}-\frac{2}{3}\right]\cos\left({x}\right)$$
 
Last edited:
  • #10
$$-\int\cos^3{2x}\,dx=-\frac{1}{4}\int\cos{6x}\,dx-\frac{3}{4}\int\cos{2x}\,dx=-\frac{1}{4}(\frac{1}{6})\sin{6x}-\frac{3}{4}(\frac{1}{2})\sin{2x}+C$$
$$\therefore-\int\cos^3{2x}\,dx=-\frac{1}{24}\sin{6x}-\frac{3}{8}\sin{2x}+C$$
This, of course, requires the reader the ability to prove $$\cos{6x}=4\cos^3{2x}-3\cos{2x}$$.
 

Similar threads

Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
4K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K