7.2.1 integrate trig with radical

  • #1

karush

Gold Member
MHB
3,264
4

Attachments

  • 270w.PNG
    270w.PNG
    6.3 KB · Views: 51
  • 270wa.PNG
    270wa.PNG
    9.4 KB · Views: 52

Answers and Replies

  • #2
\(\displaystyle \int_0^{\pi/4} \sqrt{1+\cos(4x)} \, dx\)

$u=2x \implies du = 2 \, dx$

\(\displaystyle \frac{1}{2} \int_0^{\pi/4} \sqrt{1+\cos[2(2x)]} \cdot 2 \, dx\)

substitute and reset the limits of integration ...

\(\displaystyle \frac{1}{2} \int_0^{\pi/2} \sqrt{1+\cos(2u)} \, du\)

note the double angle identity, $\cos(2u) = 2\cos^2{u}-1 \implies 1+\cos(2u) = 2\cos^2{u}$

\(\displaystyle \frac{1}{2} \int_0^{\pi/2} \sqrt{2\cos^2{u}} \, du\)

note $\sqrt{2\cos^2{u}} = \sqrt{2} \cdot \sqrt{\cos^2{u}} = \sqrt{2} \cdot |\cos{u}| = \sqrt{2} \cdot \cos{u}$ since $\cos{u} \ge 0$ in quadrant I.

\(\displaystyle \frac{\sqrt{2}}{2} \int_0^{\pi/2}\cos{u} \, du\)

$\dfrac{\sqrt{2}}{2} \bigg[\sin{u} \bigg]_0^{\pi/2} = \dfrac{\sqrt{2}}{2} (1-0) = \dfrac{\sqrt{2}}{2}$
 
  • #3
ok I see now it was resetting the limits because of substitution

Mahalo
 

Suggested for: 7.2.1 integrate trig with radical

Replies
9
Views
527
Replies
3
Views
1K
Replies
2
Views
286
Replies
3
Views
774
Replies
6
Views
993
Replies
5
Views
881
Replies
4
Views
551
Replies
1
Views
518
Replies
4
Views
2K
Back
Top