Where is the minimum intensity point between two bright lights?

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Eyes Light
Click For Summary
SUMMARY

The discussion focuses on determining the minimum intensity point between two bright lights separated by a distance $a$, with intensities $I_1$ and $I_2$. The analysis utilizes the inverse square law of radiation to calculate the combined intensity at various points along the passageway. The conclusion confirms that the problem is underdetermined but provides a plausible solution based on the assumption of one-dimensional radiometry. The participants agree on the interpretation and correctness of the approach taken.

PREREQUISITES
  • Understanding of the inverse square law of radiation
  • Basic knowledge of radiometry
  • Familiarity with intensity calculations in physics
  • Concept of one-dimensional analysis in light intensity
NEXT STEPS
  • Study the mathematical derivation of the inverse square law of radiation
  • Explore advanced concepts in radiometry and its applications
  • Investigate multi-dimensional intensity calculations
  • Learn about practical applications of light intensity in real-world scenarios
USEFUL FOR

Physicists, engineers, and students studying optics or radiometry, as well as anyone interested in the principles of light intensity and its calculations in one-dimensional spaces.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Suppose two bright lights are separated by a distance $a$, with one light having intensity $I_1$ and the other having intensity $I_2$. I am situated between the lights, trapped in a narrow passageway, and the light is blinding me. (Sweating) Please find the point at which the light I receive is a minimum. (Whew)
 
Mathematics news on Phys.org
I have to say Mark that the challenge is severely underdetermined. Assuming the most likely interpretation, my solution is below:

Let the first light be located at position $x = 0$, and the second light at position $x = a$. Then, at any position $x$, the amount of light received from the first light is $I_1 x^{-2}$ and the amount of light received from the second light is $I_2 (a - x)^{-2}$. So the total light received is:

$$I(x) = I_1 x^{-2} + I_2 (a - x)^{-2}$$

Differentiating with respect to $x$ to find the minimum:

$$\frac{d}{dx} I(x) = -2 I_1 x^{-3} + 2 I_2 (a - x)^{-3}$$

And setting this to zero:

$$-2 I_1 x^{-3} + 2 I_2 (a - x)^{-3} = 0$$

$$I_2 (a - x)^{-3} - I_1 x^{-3} = 0$$

$$I_2 (a - x)^{-3} = I_1 x^{-3}$$

$$\left (\frac{a - x}{x} \right )^{-3} = \frac{I_1}{I_2}$$

$$\left (\frac{a - x}{x} \right )^3 = \frac{I_2}{I_1}$$

$$\frac{a - x}{x} = \sqrt[3]{ \frac{I_2}{I_1}}$$

$$\frac{a}{x} - 1 = \sqrt[3]{ \frac{I_2}{I_1}}$$

$$\frac{a}{x} = \sqrt[3]{ \frac{I_2}{I_1}} + 1$$

$$\frac{x}{a} = \frac{1}{\sqrt[3]{ \frac{I_2}{I_1}} + 1}$$

$$x = \frac{a}{\sqrt[3]{ \frac{I_2}{I_1}} + 1}$$

So this would be the position where the light received is minimized. Notice the solution is linear in $a$. Indeed, the problem is scale-invariant, since increasing the distance between the two lights does not change their intensity ratio.

Note the singularity at $I_1 = 0$. Let us depart from the abstract realm of mathematics for a moment and consider the physical implications of turning off the first light. Take a few minutes to convince yourself that the solution is going to be $x = 0$ ("as far as possible from the second light") and the issue is resolved.

Here is a plot of where you should be (in terms of $\frac{x}{a}$), against $\frac{I_2}{I_1}$ ratios (higher $x$-values mean the second light is brighter than the first):

9DcqZwE.gif


Notice that $\frac{x}{a} = \frac{1}{2}$ when $I_1 = I_2$, as can be reasonably expected.


Of course this analysis is not very rigorous, but then again, radiometry is not well-defined in one dimension (though I think it could easily be made to be) so I think this is what you meant.

 
Last edited:
Yes, it is intended to be in one dimension, where the inverse square law of radiation is used to determine the sum of the intensities. Your answer is correct! (Sun)
 

Similar threads

Replies
8
Views
5K
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 146 ·
5
Replies
146
Views
10K
  • · Replies 45 ·
2
Replies
45
Views
6K