MHB Where Should I Begin with Parabolas?

  • Thread starter Thread starter Ilikebugs
  • Start date Start date
  • Tags Tags
    Parabola
Click For Summary
The discussion focuses on understanding the properties of parabolas, specifically the axis of symmetry and the minimum value of a quadratic function. The axis of symmetry for the function y(x) = 5x^2 + ax + b is determined to be x = -a/10. Using this, the minimum value of y is calculated as y_min = -1/5. The participants confirm that a unique solution to the system of equations is found with a = 0 and b = -1/5, leading to the conclusion that the minimum value of the function is indeed -1/5. The calculations and reasoning are validated through collaborative discussion.
Ilikebugs
Messages
94
Reaction score
0
View attachment 6358 I don't know where to start :s
 

Attachments

  • Parabola.png
    Parabola.png
    19.2 KB · Views: 115
Mathematics news on Phys.org
We know the axis of symmetry for the general quadratic:

$$f(x)=ax^2+bx+c$$

is the line:

$$x=-\frac{b}{2a}$$

And so for the given function:

$$y(x)=5x^2+ax+b$$

The axis of symmetry is:

$$x=-\frac{a}{10}$$

And so the minimum value of $y$ will be:

$$y_{\min}=y\left(-\frac{a}{10}\right)=5\left(-\frac{a}{10}\right)^2+a\left(-\frac{a}{10}\right)+b=\frac{20b-a^2}{20}$$

Now, we are given two points on the parabola, and using this data, we obtain:

$$5a^2+a(a)+b=b$$

$$5b^2+ab+b=a$$

Bearing in mind that $a\ne b$, can you obtain a unique solution to the above system?
 
a is 0, b is -1/5
 
Ilikebugs said:
a is 0, b is -1/5

Yes, that's what I got too. (Yes)

So then, what is $y_{\min}$?
 
-1/5?
 
Ilikebugs said:
-1/5?

That's correct.

Alternatively, we have

$$b=5(a)^2+a(a)+b\implies a=0$$

Substituting $-\frac{a}{10}=0$ for $x$ into $y=5x^2+ax+b$ gives $y=-\frac15$ as our minimum.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K