MHB Where Should I Begin with Parabolas?

  • Thread starter Thread starter Ilikebugs
  • Start date Start date
  • Tags Tags
    Parabola
Ilikebugs
Messages
94
Reaction score
0
View attachment 6358 I don't know where to start :s
 

Attachments

  • Parabola.png
    Parabola.png
    19.2 KB · Views: 103
Mathematics news on Phys.org
We know the axis of symmetry for the general quadratic:

$$f(x)=ax^2+bx+c$$

is the line:

$$x=-\frac{b}{2a}$$

And so for the given function:

$$y(x)=5x^2+ax+b$$

The axis of symmetry is:

$$x=-\frac{a}{10}$$

And so the minimum value of $y$ will be:

$$y_{\min}=y\left(-\frac{a}{10}\right)=5\left(-\frac{a}{10}\right)^2+a\left(-\frac{a}{10}\right)+b=\frac{20b-a^2}{20}$$

Now, we are given two points on the parabola, and using this data, we obtain:

$$5a^2+a(a)+b=b$$

$$5b^2+ab+b=a$$

Bearing in mind that $a\ne b$, can you obtain a unique solution to the above system?
 
a is 0, b is -1/5
 
Ilikebugs said:
a is 0, b is -1/5

Yes, that's what I got too. (Yes)

So then, what is $y_{\min}$?
 
-1/5?
 
Ilikebugs said:
-1/5?

That's correct.

Alternatively, we have

$$b=5(a)^2+a(a)+b\implies a=0$$

Substituting $-\frac{a}{10}=0$ for $x$ into $y=5x^2+ax+b$ gives $y=-\frac15$ as our minimum.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top