Which Spring Constants to Use for Magnet Oscillation Experiment?

AI Thread Summary
The discussion focuses on an academic research project investigating the oscillations of magnets attached to extension springs, with an emphasis on using different spring constants to gather diverse data. The researcher seeks to identify ten specific spring constants suitable for a load of approximately 40 grams to achieve varying oscillation patterns. Clarification is requested regarding the nature of the oscillations, specifically whether they pertain to the frequency in vertical spring-mass systems. Questions are raised about the choice of magnets over standard weights and the specific measurements intended for the experiment. The conversation emphasizes the importance of defining a clear research question and designing a procedure to address it effectively.
Boileddog
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
For my academic research project, I am studying the oscillatory of magnets attached to extension springs. And to have variety of data on different types of oscillation, I'll be using different spring constants as a variable. But in order to get the springs I need to know the dimensions of the specific springs. Therefore, what are the 10 different spring constants that I should have for ascendingly varying oscillations of spring for a load of around 40 grams?
 
Physics news on Phys.org
Boileddog said:
For my academic research project, I am studying the oscillatory of magnets attached to extension springs.
Please be more specific. What exactly is the "oscillatory of magnets attached to extension springs"? Are you talking about the frequency of oscillations in vertical spring-mass systems? If so, why use magnets and not plain weights? What are you going to measure? In projects of this kind, one asks a question and then designs a procedure to answer it. What question, specifically, are you asking?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top