MHB Why Are Square Roots of Cubes Not Always Equal?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Roots Square
Yankel
Messages
390
Reaction score
0
Hi,

I have a very basic question that suddenly hit me regarding square roots.

Why this is equal
\[\sqrt[3]{(1+x^{3})^{2}}=(1+x^{3})^{^{\frac{2}{3}}}\]

but this isn't

\[\sqrt{(x-2)^{3}}\neq (x-2)^{\frac{3}{2}}\]

(well according to Maple it isn't)

I understand why the first one is correct, but I assumed to believe that also the second one is equal and now I am confused.
 
Mathematics news on Phys.org
Yankel said:
Hi,

I have a very basic question that suddenly hit me regarding square roots.

Why this is equal
\[\sqrt[3]{(1+x^{3})^{2}}=(1+x^{3})^{^{\frac{2}{3}}}\]

but this isn't

\[\sqrt{(x-2)^{3}}\neq (x-2)^{\frac{3}{2}}\]

(well according to Maple it isn't)

I understand why the first one is correct, but I assumed to believe that also the second one is equal and now I am confused.
Wolfram Alpha has no problem with it. (Note though that there is an issue when x - 2 < 0. I don't know why.)

-Dan
 
They are equal when $(x-2)^3 \geq 0$, but that is not defined for all $x \in \mathbb{R}$.

Consider $\sqrt{(-1)^6}$. What is the result of this operation? If you work inside out, you'll get $$\sqrt{(-1)^6} = \sqrt{1} = 1.$$ On the other hand, if you apply the exponents rule, you get $$\sqrt{(-1)^6} = (-1)^{\frac{6}{2}} = (-1)^3 = -1.$$ Is mathematics contradicting itself? Could our whole world be CRUMBLING BEFORE THE MIGHT OF EXPONENTIATION? Not really. The subtlety is that the operations are defined for nonnegative real numbers, letting the theory work smoothly. When we take in account negative real numbers as well, we take the order exponentiation - root to enable such operations.

In some cases it is not even possible to do so: in the real numbers there is no thing as $\sqrt{(-1)^5}$ because it is not defined.

Hope this has helped. Cheers! :D
 
topsquark said:
(Note though that there is an issue when x - 2 < 0. I don't know why.)

-Dan

What would a calculator make of $(-1)^{0.66667}$?

Oh, and my favorite:
$$-1=(-1)^{\frac 23 \cdot \frac 32}=((-1)^{\frac 23})^{\frac 32}=1^{\frac 32}=1$$

EDIT: Ah, Fantini was quicker than me!
 
Last edited:
Thank you, but if the issue here is the expression under the square root being positive or negative, then how come the first expression is equal ?

1+x^3 is not positive for every x in R, and yet, Maple seem to think it's Ok.
 
You used the right term: square root. What you have first is a cubic root, which is defined for all real numbers. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top