MHB Why Can't a Proper Normal Subgroup Contain a Sylow Normalizer in a Group?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Subgroup
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $P$ be a $p$-Sylow subgroup in $G$ and $N=N_G(P)$.

I want to show that there is no proper normal subgroup $H$ of $G$ that contains $N$.
We suppose that there is a proper normal subgroup $H$ of $G$ that contains $N$, $$N\leq H<G$$

Then $[G:N]=[G:H][H:N]$, with $[G:H]>1$.

How can we find a contradicion? (Wondering)

Do we use the definition of a normal subgroup? (Wondering)
 
Physics news on Phys.org
Do we maybe use Frattini Argument? (Wondering)

By Frattini Argument we have that $G=HN_G(P)$.

Since $H$ is a normal subgroup of $H$ and since $N_G(P)\leq H$, we have that $HN_G(P)\subseteq H \Rightarrow G\subseteq H$.

We have that $H\subseteq G$.

So, it holds that $G=H$. This is a contradiction, since $H$ is a proper subgroup of $G$. Is this correct? (Wondering)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top