MHB Why Can't a Proper Normal Subgroup Contain a Sylow Normalizer in a Group?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Subgroup
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $P$ be a $p$-Sylow subgroup in $G$ and $N=N_G(P)$.

I want to show that there is no proper normal subgroup $H$ of $G$ that contains $N$.
We suppose that there is a proper normal subgroup $H$ of $G$ that contains $N$, $$N\leq H<G$$

Then $[G:N]=[G:H][H:N]$, with $[G:H]>1$.

How can we find a contradicion? (Wondering)

Do we use the definition of a normal subgroup? (Wondering)
 
Physics news on Phys.org
Do we maybe use Frattini Argument? (Wondering)

By Frattini Argument we have that $G=HN_G(P)$.

Since $H$ is a normal subgroup of $H$ and since $N_G(P)\leq H$, we have that $HN_G(P)\subseteq H \Rightarrow G\subseteq H$.

We have that $H\subseteq G$.

So, it holds that $G=H$. This is a contradiction, since $H$ is a proper subgroup of $G$. Is this correct? (Wondering)
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...