MHB Why can't I apply L'Hopital's rule to all indeterminate forms?

AI Thread Summary
L'Hôpital's rule cannot be applied to all indeterminate forms, as demonstrated in the example of the limit as x approaches 3 for the expression (x^4 - 81)/(2x^2 - 5x - 3). In this case, applying the rule incorrectly led to an answer of 9, while the correct limit is 108/7. The discussion highlights that both the numerator and denominator can be factored to simplify the evaluation without needing L'Hôpital's rule. Recognizing the common factor of (x - 3) in both polynomials allows for easier computation. Ultimately, proper simplification is crucial for accurately resolving limits in indeterminate forms.
tmt1
Messages
230
Reaction score
0
I have a certain set of problems (i.e. https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/limcondirectory/LimitConstant.html), where many problems are in an indeterminate form ($\frac{0}{0}$) but if we apply L'Hopital's rule it yields an incorrect answer. Instead, I have to simplify the expression and then evaluate the expression like normal.

For example, $$\lim_{{x}\to{3}} \frac{x^4 - 81}{2x^2 - 5x - 3}$$.

If I apply l'hopital's rule, I get $\frac{x^3}{x} = 9$ but this is the wrong answer.
 
Mathematics news on Phys.org
tmt said:
I have a certain set of problems (i.e. https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/limcondirectory/LimitConstant.html), where many problems are in an indeterminate form ($\frac{0}{0}$) but if we apply L'Hopital's rule it yields an incorrect answer. Instead, I have to simplify the expression and then evaluate the expression like normal.

For example, $$\lim_{{x}\to{3}} \frac{x^4 - 81}{2x^2 - 5x - 3}$$.

If I apply l'hopital's rule, I get $\frac{x^3}{x} = 9$ but this is the wrong answer.

Hi tmt! ;)

Applying L'Hôpital's rule I'm getting:
$$\lim_{{x}\to{3}} \frac{x^4 - 81}{2x^2 - 5x - 3}
= \lim_{{x}\to{3}} \frac{4x^3}{4x - 5}
= \frac{4\cdot 3^3}{4\cdot 3 - 5}
= \frac{108}{7}
$$
 
Applying L'Hopital's rule, that is, differentiating numerator and denominator separately, we have [math]\frac{4x^3}{4x- 5}[/math], not "[math]\frac{x^3}{x}[/math]. It looks like you forgot the "-5" in the derivative of the denominator.

Added later: for a problem like this, you don't really need to apply "L'Hopital's rule". Since numerator and denominator are polynomials that are equal to 0 when x= 3, it follows immediately that both have a factor of x- 3. x^4- 81= (x^2- 9)(x^2+ 9)= (x- 3)(x+ 3)(x^3+ 9). 2x^2- 5x- 3= (2x+ 1)(x- 3). (Knowing that x- 3 is a factor makes that a lot easier to factor.)

So, for x not equal to 3, \frac{x^2- 81}{x^2- 5x- 3}=\frac{(x- 3)(x+ 3)(x^2+ 9)}{(x- 3)(2x+ 1)}= \frac{(x+ 3)(x^2+ 9)}{2x+ 1} and so \lim_{x\to 3}\frac{x^2- 81}{x^2- 5x- 3}= \lim_{x\to 3} \frac{(x+ 3)(x^2+ 9)}{2x+ 1}= \frac{(3+ 3)(9+ 9)}{ 6+ 1}= \frac{108}{7}.
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top