Why Did I Get a Different Average Velocity Calculation for the Particle?

Click For Summary
SUMMARY

The discussion centers on the calculation of average velocity for a particle using the formula v_{avg} = \frac{s_f - s_i}{t_f - t_i}. A participant initially reported an incorrect average velocity of -4 ft/s due to a mistake in algebraic manipulation and missing parentheses. The correct formula, as clarified by other users, is v_{avg} = \frac{1}{2}(t_f + t_i) - 6. Participants emphasized the importance of correctly substituting initial and final positions to avoid errors in calculations.

PREREQUISITES
  • Understanding of average velocity calculations
  • Familiarity with algebraic manipulation
  • Knowledge of quadratic equations
  • Ability to apply physics formulas in motion analysis
NEXT STEPS
  • Review the derivation of average velocity formulas in kinematics
  • Practice algebraic manipulation with parentheses in equations
  • Explore the implications of initial and final position calculations in motion
  • Learn about common mistakes in physics problem-solving and how to avoid them
USEFUL FOR

Students studying physics, educators teaching kinematics, and anyone interested in improving their problem-solving skills in motion-related calculations.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1682484540942.png

The solution to (a)(i) is 0 ft/s. However I got -4 ft/s.

The formula I used was,
##v_{avg} = \frac{s_f - s_i}{t_f - t_i}##
##v_{avg} = \frac{\frac{1}{2}t^2_f - 6t_f + 23 - \frac{1}{2}t^2_i - 6t_i + 23}{t_f - t_i}##
##v_{avg} = \frac{ \frac{1}{2}(t^2_f - t^2_i) - 6(t_f - t_i)}{t_f - t_i}##

If someone could please point out what I did wrong, that would be much appreciated.

Many thanks!
 
Physics news on Phys.org
Can't you just plug in the times in question to get the two positions in question? All the algebra seems unnecessary.

That aside, I don't see where the -4 comes from. Your bottom line seems correct.
 
Last edited:
  • Like
Likes   Reactions: FactChecker, member 731016 and malawi_glenn
Halc said:
Can't you just plug in the times in question to get the two positions in question? All the algebra seems unnecessary.

That aside, I don't see where the -4 comes from. Your bottom line seems correct.
Thank you for your reply @Halc!

Sorry, my mistake. The formula that I forgot to write above was ## v_{avg} = \frac{1}{2}\Delta t - 6## because I mistakenly cancelled some of the change in times.

Many thanks!
 
1) You should include some parenthesis in your second line where you have substituted for ##s_i##.
ChiralSuperfields said:
The formula that I forgot to write above was ## v_{avg} = \frac{1}{2}\Delta t - 6##
2) This looks wrong to me. I think it should be ##v_{avg} = \frac{\frac{1}{2}(t_f+t_i)(t_f-t_i) - 6(t_f-t_i)}{(t_f-t_i)}= \frac{1}{2}(t_f+t_i) - 6##.
3) You could always follow the advice @Halc gave in post #2 of just calculating the initial and final positions. At least use that to check your algebra.
 
Last edited:
  • Like
Likes   Reactions: member 731016
ChiralSuperfields said:
##v_{avg} = \frac{ \frac{1}{2}(t^2_f - t^2_i) - 6(t_f - t_i)}{t_f - t_i}##

If someone could please point out what I did wrong, that would be much appreciated.
Formula seems correct. Did you simply forget the ##1\over 2## ?

[edit] never mind :smile:
 
  • Like
Likes   Reactions: member 731016
ChiralSuperfields said:
##v_{avg} = \frac{\frac{1}{2}t^2_f - 6t_f + 23 - \frac{1}{2}t^2_i - 6t_i + 23}{t_f - t_i}##
Typo: Missing parentheses around the ##t_i## terms, leading to wrong signs.
ChiralSuperfields said:
The formula that I forgot to write above was ## v_{avg} = \frac{1}{2}\Delta t - 6##
What is ##\frac{x^2-y^2}{x-y}##?
 
  • Like
Likes   Reactions: member 731016, FactChecker and jbriggs444
FactChecker said:
1) You should include some parenthesis in your second line where you have substituted for ##s_i##.

2) This looks wrong to me. I think it should be ##v_{avg} = \frac{\frac{1}{2}(t_f+t_i)(t_f-t_i) - 6(t_f-t_i)}{(t_f-t_i)}= \frac{1}{2}(t_f+t_i) - 6##.
3) You could always follow the advice @Halc gave in post #2 of just calculating the initial and final positions. At least use that to check your algebra.
Thank you for your reply @FactChecker ! I agree.
 
BvU said:
Formula seems correct. Did you simply forget the ##1\over 2## ?

[edit] never mind :smile:
haruspex said:
Typo: Missing parentheses around the ##t_i## terms, leading to wrong signs.

What is ##\frac{x^2-y^2}{x-y}##?
Thank you for your replies @BvU and @haruspex!

Yes, sorry I forgot the parentheses. ##\frac{(x + y)(x - y)}{x - y} = x + y##

Many thanks!
 

Similar threads

Replies
8
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
11K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
9K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K