B Why do material particles interact?

  • B
  • Thread starter Thread starter Vectronix
  • Start date Start date
  • Tags Tags
    Material Particles
Vectronix
Messages
64
Reaction score
2
Why do fermions exchange bosons with each other?
 
Physics news on Phys.org
What kind of answer are you looking for? This question is very broad.
 
  • Like
Likes bhobba
Do they exchange bosons?

If "an electron" is an excitation of an 'electron field', its electric charge proprerties suggest it excites and interacts with EM field, which is essentially, the photon field.
As such, the excitations of the photon field as result of two electrtons can be intetpreted as "virtual photons" exchanged between the two to determine the momentum differential...

At least, that's my opinion.
 
Vectronix said:
Why do fermions exchange bosons with each other?

In quantum field theory, the interactions that fundamental fields/particles have with each other are encoded by the monomials of the field variables that appear in the Lagrangian/action functional that defines the field theory.

For instance the electron-photon interaction
InteractionVertexOfQED.png

is reflected by the fact that the Lagrangian density of quantum electrodynamics (example 5.11 in the PF QFT notes) contains a monomial of the form

$$
\overline{\psi} \gamma^{\mu} \psi a_\mu
$$

where ##\psi## corresponds to the electron field and ##a## to the photon field.

So from this perspective your question is this grand question:

1) Why does the Lagrangian density of the standard model of particle physics have the broad form it has? Namely the form of Einstein-Yang-Mills-Dirac-Higgs theory?

That's an excellent question. A related question is:

2) Assuming the Lagrangian density of the standard model of particle physics is of Einstein-Yang-Mills-Dirac-Higgs theory-type, why does it have the precise numerical coeffcients that it has, for the couplings between the particles?

This second question has been much discussed, but remains wide open. The first question, the one that you are effectively asking, is receiving less attention, but regarding the first question there are some intersting hints.

Namely there are deeper principles which one may invoke, that imply that physics is modeled by Einstein-Yang-Mills-Dirac-Higgs theory, even if they do not imply the precise numerical values of masses and couplings.

One such principle is the assumption that virtual particles are secretly strings (see the last paragraphs of Does string theory make predictions? How?). Another such principle is that the action functional is the "spectral action" of a "spectral triple". These two principles are not unrelated.

Hence should these principles be correct principles of nature, they would reduce the question "Why do fermions interact via exchange of bosons the general way we see in experiment?" to something more fundamental. Whether these principles are principles of nature remains open. But part of the interest in these principles is driven by this implication, that they would provide an answer to the question that you are asking.
 

Attachments

  • InteractionVertexOfQED.png
    InteractionVertexOfQED.png
    1,009 bytes · Views: 477
Last edited:
  • Like
Likes ftr
PeterDonis said:
What kind of answer are you looking for? This question is very broad.

I was looking for the kind of answers given here. I will certainly try to take a deeper look into the explanations given here so I can understand physical interactions. Thank you for your replies!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
3
Views
2K
Replies
15
Views
3K
Replies
17
Views
2K
Replies
4
Views
1K
Replies
20
Views
2K
Replies
4
Views
2K
Back
Top