MHB Why Do Physics Equations Confuse Me So Much?

  • Thread starter Thread starter lmae
  • Start date Start date
  • Tags Tags
    Head
AI Thread Summary
The discussion revolves around the confusion experienced by a user regarding physics equations, particularly those related to motion and velocity. The first question involves a formula for calculating distance traveled by an accelerating car, with participants providing guidance on transposing the equation and solving for velocity. The second question pertains to determining the travel time of an ordinary train based on the express train's travel time, with users clarifying the relationship between the two. Despite receiving assistance, the original poster continues to struggle with understanding the concepts and seeks further clarification. The conversation highlights the challenges many face when grappling with physics equations and the importance of clear explanations.
lmae
Messages
8
Reaction score
0
My brain feels like goop after reading these. I am struggling big time! Help is greatly appreciated.

Q1: The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.
a) Transpose the formula, solving for v.
b) Find the velocity, v (metres/second, m/s) when s=400m, t=20s and u=30m.

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?
 
Mathematics news on Phys.org
lmae said:
My brain feels like goop after reading these. I am struggling big time! Help is greatly appreciated.

Q1: The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.
a) Transpose the formula, solving for v.
b) Find the velocity, v (metres/second, m/s) when s=400m, t=20s and u=30m.

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?

Hello Imae :).

1a)

$$s = \frac{u+v}{2t}$$

Let's multiply both sides by $2t$, this gives,

$$s*2t = \frac{u+v}{2t} * 2t$$.

We can see that the 2t terms on the right hand side (RHS) will cancel giving us,

$$2ts = u + v$$

Subtracting u from both sides,$$2ts - u = u + v - u$$

$$2ts - u = v$$

Remember, whatever we do to one side, we must do to the other side. And in all of the above steps, we are working towards have v as our subject (in other words, we want the expression to be of the form 'v = something').

I have to go now, but hopefully this can get you started.
 
The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.

Joppy did this problem assuming you meant [math]s= \frac{u+ v}{2t}[/math]. In fact, from physics, the correct formula is [math]s= \frac{u+ v}{2} t[/math]. That is a much simpler problem. To solve the equation v= At for t, divide both sides by A: t= v/A. In this case, [math]A= \frac{u+ v}{2}[/math]

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?

Let "A" be the time for an express train, "B" the time for an ordinary train. If "the express train takes only 3/5 of the time an ordinary train takes" then E= (3/5)O and, dividing both sides by 3/5, O= (5/3)E. What is 5/3 of 5 1/2 hours?
 
Last edited by a moderator:
HallsofIvy said:
Joppy did this problem assuming you meant [math]s= \frac{u+ v}{2t}[/math]. [/math]

Ha! Whoops. I thought something seemed strange there, it's been awhile since I've dealt with these expressions. Thanks HallsofIvy, and apologies to the OP if any confusion was caused :).
 
Blast! I started off saying "Let "A" be the time for an express train, "B" the time for an ordinary train." but then switched to "E" and "O"!

I meant to say: If "the express train takes only 3/5 of the time an ordinary train takes" then A= (3/5)B and, dividing both sides by 3/5, B= (5/3)A. What is 5/3 of 5 1/2 hours?
 
Thanks for all your help guys. Got the train equation down pat. Not sure how I didn't understand that in the first place. Still have no idea what I am doing with question 1. (Not your fault Joppy, just really suck at maths) haha. How would I go about setting that question out? I find when I see the answer in front of me it is easy to find how we got to that solution but still struggle when it is looming around unanswered. I have given it another go and spoken to a lecturer who politely told me I was wrong in my final answer..
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top