MHB Why Do Physics Equations Confuse Me So Much?

  • Thread starter Thread starter lmae
  • Start date Start date
  • Tags Tags
    Head
lmae
Messages
8
Reaction score
0
My brain feels like goop after reading these. I am struggling big time! Help is greatly appreciated.

Q1: The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.
a) Transpose the formula, solving for v.
b) Find the velocity, v (metres/second, m/s) when s=400m, t=20s and u=30m.

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?
 
Mathematics news on Phys.org
lmae said:
My brain feels like goop after reading these. I am struggling big time! Help is greatly appreciated.

Q1: The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.
a) Transpose the formula, solving for v.
b) Find the velocity, v (metres/second, m/s) when s=400m, t=20s and u=30m.

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?

Hello Imae :).

1a)

$$s = \frac{u+v}{2t}$$

Let's multiply both sides by $2t$, this gives,

$$s*2t = \frac{u+v}{2t} * 2t$$.

We can see that the 2t terms on the right hand side (RHS) will cancel giving us,

$$2ts = u + v$$

Subtracting u from both sides,$$2ts - u = u + v - u$$

$$2ts - u = v$$

Remember, whatever we do to one side, we must do to the other side. And in all of the above steps, we are working towards have v as our subject (in other words, we want the expression to be of the form 'v = something').

I have to go now, but hopefully this can get you started.
 
The formula s=(u+v)/2t works out the distance traveled by an accelerating car (s), where u is the inital velocity, v is the final velocity and t is the time interval.

Joppy did this problem assuming you meant [math]s= \frac{u+ v}{2t}[/math]. In fact, from physics, the correct formula is [math]s= \frac{u+ v}{2} t[/math]. That is a much simpler problem. To solve the equation v= At for t, divide both sides by A: t= v/A. In this case, [math]A= \frac{u+ v}{2}[/math]

Q2:An express train takes 5 1/2 hours to travel between two cities. If the express train takes only 3/5 of the time an ordinary train takes, how long will it take for the ordinary train to travel between the two towns?

Let "A" be the time for an express train, "B" the time for an ordinary train. If "the express train takes only 3/5 of the time an ordinary train takes" then E= (3/5)O and, dividing both sides by 3/5, O= (5/3)E. What is 5/3 of 5 1/2 hours?
 
Last edited by a moderator:
HallsofIvy said:
Joppy did this problem assuming you meant [math]s= \frac{u+ v}{2t}[/math]. [/math]

Ha! Whoops. I thought something seemed strange there, it's been awhile since I've dealt with these expressions. Thanks HallsofIvy, and apologies to the OP if any confusion was caused :).
 
Blast! I started off saying "Let "A" be the time for an express train, "B" the time for an ordinary train." but then switched to "E" and "O"!

I meant to say: If "the express train takes only 3/5 of the time an ordinary train takes" then A= (3/5)B and, dividing both sides by 3/5, B= (5/3)A. What is 5/3 of 5 1/2 hours?
 
Thanks for all your help guys. Got the train equation down pat. Not sure how I didn't understand that in the first place. Still have no idea what I am doing with question 1. (Not your fault Joppy, just really suck at maths) haha. How would I go about setting that question out? I find when I see the answer in front of me it is easy to find how we got to that solution but still struggle when it is looming around unanswered. I have given it another go and spoken to a lecturer who politely told me I was wrong in my final answer..
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top