MHB Why do the answers differ by a factor of 7?

Click For Summary
The discussion centers on the integral $$\int \frac{x}{\sqrt{x^2-49}}dx$$ and the differing results obtained from two methods: inspection and trigonometric substitution. Method 1 yields the result $$\sqrt{x^2-49}+C$$, while Method 2 results in $$7\sqrt{x^2-49}+C$$, leading to confusion about the factor of 7. The discrepancy arises from a misunderstanding in the trigonometric substitution process, particularly in relating $\tan(\theta)$ back to $x$. Ultimately, it is clarified that while the methods yield different constants, the difference does not affect the overall evaluation of the integral between endpoints.
Dethrone
Messages
716
Reaction score
0
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.
 
Physics news on Phys.org
Rido12 said:
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.

Hi Rido12,

There's a mistake in your calculation from Method 2. You should have

$\displaystyle 7\int \sec^2(\theta) \, d\theta = 7\tan(\theta) + C = \sqrt{x^2 - 49} + C$.
 
How? We have $x=7 \sec(\theta)$, so $\frac{x}{7} = \sec(\theta)$. From a right-triangle, I see that $\tan(\theta)=\sqrt{x^2-49}$.
Therefore, $7 \tan(\theta)+C=7\sqrt{x^2-49}+C$

Where's my mistake? Wait. you are right. $\tan(\theta)=\frac{\sqrt{x^2-49}}{7}$. My brain is failing me now. (Crying)
 
Since $x = 7\sec(\theta)$, $x^2 - 49 = 49\tan^2(\theta)$. Thus $\sqrt{x^2 - 49} = 7\tan(\theta)$. Keep in mind that $1 + \tan^2(\theta) = \sec^2(\theta)$.
 
Rido12 said:
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.

Why bother with a trig substitution? $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left( x^2 - 49 \right) = 2x \end{align*}$, which you almost have. So write it as $\displaystyle \begin{align*} \int{ \frac{x}{\sqrt{x^2 - 49} }\,\mathrm{d}x} = \frac{1}{2} \int{ \frac{2x}{\sqrt{x^2 - 49}}\,\mathrm{d}x} \end{align*}$ and substitute $\displaystyle \begin{align*} u = x^2 - 49 \implies \mathrm{d}u = 2x\,\mathrm{d}x \end{align*}$...
 
I saw that the derivative was in the top, but I just wanted to use it anyway. I did that substitution in method 1 of my original post.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K