Why do the answers differ by a factor of 7?

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$\int \frac{x}{\sqrt{x^2-49}}dx$$ using different methods, specifically comparing results obtained through inspection and trigonometric substitution. Participants explore the apparent discrepancy in the results, which differ by a factor of 7.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants present two methods for evaluating the integral: one by inspection and another using trigonometric substitution, both leading to different expressions.
  • One participant notes that the results differ by a factor of 7 and expresses confusion about this difference, acknowledging that it does not affect the definite integral.
  • A later reply identifies a mistake in the trigonometric substitution method, suggesting that the correct result should align with the inspection method.
  • Another participant reflects on the relationship between the variables in the trigonometric substitution, indicating a misunderstanding about the tangent function's relationship to the integral.
  • Further contributions clarify the relationship between the variables, with one participant explaining how the substitution leads to the factor of 7 in the integral's evaluation.
  • One participant suggests an alternative approach using a substitution that directly relates to the derivative of the expression in the integral.
  • Another participant mentions having used the substitution in their original method but did not elaborate further.

Areas of Agreement / Disagreement

Participants do not reach a consensus regarding the methods used or the source of the discrepancy in the factor of 7. There are competing views on the correctness of the approaches and the interpretations of the results.

Contextual Notes

Participants express uncertainty about the implications of the factor of 7 in the context of definite integrals and the correctness of the trigonometric substitution method. There are unresolved aspects regarding the assumptions made during the substitution process.

Dethrone
Messages
716
Reaction score
0
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.
 
Physics news on Phys.org
Rido12 said:
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.

Hi Rido12,

There's a mistake in your calculation from Method 2. You should have

$\displaystyle 7\int \sec^2(\theta) \, d\theta = 7\tan(\theta) + C = \sqrt{x^2 - 49} + C$.
 
How? We have $x=7 \sec(\theta)$, so $\frac{x}{7} = \sec(\theta)$. From a right-triangle, I see that $\tan(\theta)=\sqrt{x^2-49}$.
Therefore, $7 \tan(\theta)+C=7\sqrt{x^2-49}+C$

Where's my mistake? Wait. you are right. $\tan(\theta)=\frac{\sqrt{x^2-49}}{7}$. My brain is failing me now. (Crying)
 
Since $x = 7\sec(\theta)$, $x^2 - 49 = 49\tan^2(\theta)$. Thus $\sqrt{x^2 - 49} = 7\tan(\theta)$. Keep in mind that $1 + \tan^2(\theta) = \sec^2(\theta)$.
 
Rido12 said:
$$\int \frac{x}{\sqrt{x^2-49}}dx$$

Method 1: (by inspection)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \,d\sqrt{x^2-49}=\sqrt{x^2-49}+C$$

Method 2: (Trig substitution)

$$\int \frac{x}{\sqrt{x^2-49}}dx=\int \frac{7\sec(\theta)}{\sqrt{49\sec^2(\theta) -49}}d(7\sec(\theta))=7\int \frac{\sec^2(\theta)\tan(\theta)}{\left| \tan(\theta) \right|}$$

Let's assume $\tan(\theta)>0$
$$=7 \int \sec^2(\theta) \,d\theta=7\sqrt{x^2-49}+C$$

Why do the answers differ by a factor of $7$? I know it doesn't matter in integration, because you just want the difference between endpoints, i.e $F(b)-F(a)$=$7F(b)-7F(a)$, but it's the first time I've seen this.

Why bother with a trig substitution? $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left( x^2 - 49 \right) = 2x \end{align*}$, which you almost have. So write it as $\displaystyle \begin{align*} \int{ \frac{x}{\sqrt{x^2 - 49} }\,\mathrm{d}x} = \frac{1}{2} \int{ \frac{2x}{\sqrt{x^2 - 49}}\,\mathrm{d}x} \end{align*}$ and substitute $\displaystyle \begin{align*} u = x^2 - 49 \implies \mathrm{d}u = 2x\,\mathrm{d}x \end{align*}$...
 
I saw that the derivative was in the top, but I just wanted to use it anyway. I did that substitution in method 1 of my original post.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K