Why does a circles angles equal up to 2pi? Wouldn't it be 1?

  • Context: High School 
  • Thread starter Thread starter Cyberice
  • Start date Start date
  • Tags Tags
    Angles Circles
Click For Summary
SUMMARY

The discussion clarifies why a circle's angles equal 2π radians, emphasizing that one radian is defined as the angle subtended by an arc equal in length to the radius of the circle. The conversation highlights that there are 2π radians in a full circle, with specific angle measurements being 1/2π for 90 degrees, π for 180 degrees, and 3/2π for 270 degrees. The use of radians is presented as the natural method for measuring angles, contrasting with the arbitrary choice of degrees.

PREREQUISITES
  • Understanding of basic geometry concepts
  • Familiarity with the definitions of radians and degrees
  • Knowledge of the relationship between circumference and radius
  • Basic trigonometric functions and their applications
NEXT STEPS
  • Study the definition and applications of radians in trigonometry
  • Explore the relationship between arc length and angle measurement
  • Learn about the historical context of radian usage in mathematics
  • Investigate the significance of Euler's contributions to trigonometry
USEFUL FOR

Students studying geometry and trigonometry, educators teaching mathematical concepts, and anyone seeking to understand the relationship between radians and degrees in circular measurements.

Cyberice
Messages
50
Reaction score
0
Why does a circles angles equal up to 2pi? Wouldn't it be 1pi? Please help.

My geometry teacher (last year - and now he's gone) drew a circle for me and defined all the points in terms of pi (is there an ASCII character for pi, by-the-way, on the keyboard?). Where the 90 degree point would be he put 1/2 pi, were the 180 degree point was he put just 'pi', at 270 he put 3/2 pi, and 360 he put 2 pi. What the heck?! I thought pi was the ratio of the diameter to the circumference. If that is true then shouldn't it be: at 90 degrees 1/4 pi, at 180 deg. 1/2 pi, 270 deg. 3/4 pi, and 360 deg. just 'pi'? Can you explain this or direct me to a site that can? Please, I'm going crazy trying to figure it out.
 
Last edited:
Mathematics news on Phys.org
It's 2Pi radians. One radian is equal to 57.2958 degrees.
Therefore, 2pi radians would be 2 x 57.2958 x 3.1416 = 360 degrees
 


Originally posted by Cyberice
My geometry teacher (last year - and now he's gone) drew a circle for me and defined all the points in terms of pi (is there an ASCII character for pi, by-the-way, on the keyboard?). Where the 90 degree point would be he put 1/2 pi, were the 180 degree point was he put just 'pi', at 270 he put 3/2 pi, and 360 he put 2 pi. What the heck?! I thought pi was the ratio of the diameter to the circumference. If that is true then shouldn't it be: at 90 degrees 1/4 pi, at 180 deg. 1/2 pi, 270 deg. 3/4 pi, and 360 deg. just 'pi'? Can you explain this or direct me to a site that can? Please, I'm going crazy trying to figure it out.

What your geometry teacher was doing was marking out the circles in Radians.

1 Radian is the angle that an arc the same length as the radius of the circle will make.

And since, as you pointed out, the ratio of diameter to circumference is [pi], and the radius is 1/2 the diameter, there are 2[pi] radians to a circle.

Thus a quarter of the way around the circle is 1/2 [pi] radians, half way [pi] radians, three quarters, 1 1/2 [pi] radians and all the way around 2[pi] radians.

Radians are the natural way to divide up a circle. ( the number of degrees were just an arbitary choice)
 
Thank you! I was wondering about that and it really bothered me. BTW, would you happen to know any sites that could explain it also (just for the heck of it)?
 
The number 2π is forced on us, it is the circumfrence divided by the radius. Now, Janus says this in his post but I will repeat it. Take the radius, mark that length off on the arc of the circumference, the angle defined is 1 radian. This definition means that there must be 2π radians in a circle. Repeat that to yourself until it starts to make sense.

Ah..., no, I really do NOT miss Donde!
 
To add, the use of this natural units system makes a lot of calculations possible. Eg. calculus with trignometric functions, which is generally based on the result that: x -> 0 : sinx -> x, provided x is in radians.
 
Using a numberline helped me out tremendously.
 
Euler is the first person who started to use radian in trigonometry. The circumference of a unit circle is 2pi, therefore he defined 360 degrees be 2pi radian.

A radian is the measure of an angle subtended at the centre of a circle by an arc equal in length to the radian.
 
(URGENT) What does subtended mean?

[?] [?] [?]

What does subtended mean? I forgot and I have a test tomorrow
 
  • #10
Subtended means spanned on the circumference between the two lines making the angle. So the arc subtended by an angle at the center of a circle means you draw the two radii that make the angle at the center of the circle, and then the smaller arc of the circumference between those two radii is the arc subtended.
 
  • #11
Thank-you:smile: It makes it clearer although I already had my test
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 70 ·
3
Replies
70
Views
8K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
8K