Why does an increase in surface area lead to a reduction in pressure?

Click For Summary
SUMMARY

The discussion centers on the inverse relationship between pressure and surface area, specifically how an increase in surface area leads to a reduction in pressure. When a hardcover book is opened, its surface area in contact with a table doubles, resulting in halved pressure while the normal force remains constant. This reduction in pressure allows for easier movement despite increased interlocking due to surface irregularities. The key takeaway is that while more surface area may suggest greater friction, the decreased pressure mitigates this effect, making it easier to overcome static friction.

PREREQUISITES
  • Understanding of basic physics concepts, particularly pressure and force.
  • Familiarity with the equation P = F/A (Pressure = Force / Area).
  • Knowledge of static friction and its dependence on surface characteristics.
  • Concept of surface irregularities and their impact on frictional forces.
NEXT STEPS
  • Research the principles of static friction and how it relates to surface area.
  • Explore the effects of surface roughness on frictional forces in materials science.
  • Study the mathematical modeling of pressure distribution in contact mechanics.
  • Investigate real-world applications of pressure-area relationships in engineering and design.
USEFUL FOR

Students and professionals in physics, engineering, and materials science who seek to understand the dynamics of pressure and friction in relation to surface area. This discussion is particularly beneficial for those studying mechanics or involved in design and material selection processes.

Kaushik
Messages
282
Reaction score
17
From what I read on the internet I found that increase in surface area that is in contact is offset by the reduction in pressure. What exactly does it mean?
This is what I understood from the it (but my understanding might be absurd :-p): does reduction in pressure mean that the "hills" or "irregularities" that are in contact become more pointy? As there is less pressure they don't feel pressed so that there is no reason for them to flatten?
If not please explain it in the molecular scale if possible.
Please and Thank You!
 
Physics news on Phys.org
Are you familiar with the relationship between pressure and area?
 
  • Like
Likes   Reactions: Kaushik
jackwhirl said:
Are you familiar with the relationship between pressure and area?
Yes! Pressure is inversely proportional to area.
## P = F/A ##
 
Right, so picture an object, say a hardcover book resting on a surface, like a table.

The book has an amount of mass, and gravity causes the book to press against the table with a force proportional to that mass. That force, divided by the area of the book in contact with the table gives pressure according to the equation you've just given.

Now, if you want to move the book across the table, you've got to press on it with enough force to overcome the static friction holding the book in place. This amount of force depends on the mass of the book and the materials of the book and table. It does not depend on the surface area of the book in contact with the table. So, for example, the force required to move the book should be the same whether it is open or closed, provided both front and back book covers are made of the same material.

Opening the book doubles the surface area in contact with the table, but does not change the mass of the book. The normal force remains the same, and the pressure is halved, now being spread over double the area.

Does that all make sense?
 
  • Like
Likes   Reactions: Kaushik
jackwhirl said:
Right, so picture an object, say a hardcover book resting on a surface, like a table.

The book has an amount of mass, and gravity causes the book to press against the table with a force proportional to that mass. That force, divided by the area of the book in contact with the table gives pressure according to the equation you've just given.

Now, if you want to move the book across the table, you've got to press on it with enough force to overcome the static friction holding the book in place. This amount of force depends on the mass of the book and the materials of the book and table. It does not depend on the surface area of the book in contact with the table. So, for example, the force required to move the book should be the same whether it is open or closed, provided both front and back book covers are made of the same material.

Opening the book doubles the surface area in contact with the table, but does not change the mass of the book. The normal force remains the same, and the pressure is halved, now being spread over double the area.

Does that all make sense?
But when the surface area in contact increases there are more irregularities kind of interlocked. So more force would require to overcome it.

You say that the pressure is halved, but how does it offset the increase in area?

Let me consider the same book you mentioned about. When I open the pages, more surface area is in contact. So when I try pushing it, due to more surface area in contact, there are more number of irregularities that opposes the force applied by me and hence prevents the book from moving (upto a certain limit). When I try moving the same book when it is closed, the surface area in contact is relatively less. Hence, there are less interlockings between the book and the surface, due to which the forces that is applied by the surface irregularities on the book is less as compared to when book was open.
Screen Shot 2020-01-22 at 11.25.16 PM.png

Now when the surface area increases it results in increase in interlocking as mentioned above.
So where Am I going wrong? Is it the 'PRESSURE' part that I am not understanding?
 
Kaushik said:
You say that the pressure is halved, but how does it offset the increase in area?
With less pressure each irregularity is pressed together less, so the interlocking is easier to overcome.

Consider a simple contact area like this for both bodies in contact: /\/\/\/\
Compute the horizontal force needed to slide the upper body of a given weight up the slopes.
Does it depend on the number of teeth?
 
  • Like
Likes   Reactions: Kaushik
Kaushik said:
But when the surface area in contact increases there are more irregularities kind of interlocked. So more force would require to overcome it.
This does not follow.

I understand it is a little counter intuitive. Think of those irregularities as 'opportunities' where interlocking could occur. They are proportional to the area. The rate at which interlocking does occur is proportional to the pressure, which as we've covered is inversely proportional to area. So you can multiply by the area and then divide by the area, but it's easier to just ignore it.
 
Last edited:
  • Like
Likes   Reactions: Kaushik

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K