I don't understand why ANYONE is confused as to why 0.33333... is exactly equal to 1/3!
If you divide 3 into 1 (using long division), you get: 0, remainder 1. But if you keep carrying out the division, you get 0.33333...
<br />
\begin{array}{rc@{}c}<br />
& \multicolumn{2}{l}{\, \, \, \00.33333\dotsb} \vspace*{0.12cm} \\<br />
\cline{2-3}<br />
\multicolumn{1}{r}{3 \hspace*{-4.8pt}} & \multicolumn{1}{l}{ \hspace*{-5.6pt} \Big) \hspace*{4.6pt} 1.00000} \\<br />
& \multicolumn{2}{l}{\, \, \,0}<br />
\vspace{1mm}<br />
\\<br />
\cline{2-3}<br />
& \multicolumn{2}{l}{\, \, \,1\phantom{.}0} \\<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.}9}<br />
\\<br />
\cline{2-3}<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.}10} \\<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.0}9}<br />
\\<br />
\cline{2-3}<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.0}10} \\<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.00}9}<br />
\\<br />
\cline{2-3}<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.00}10} \\<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.000}9}<br />
\\<br />
\cline{2-3}<br />
& \multicolumn{2}{l}{\, \, \, \phantom{1.0000}etc.}<br />
\end{array}<br />As you can see, the cycle continues and the quotient is never exactly resolved since the 3's repeat forever.