peterspencers
- 71
- 0
why does space time not contract uniformly in every direction around a fast moving object?
Length contraction in special relativity occurs exclusively in the direction of motion due to the vector nature of velocity. This phenomenon is essential for maintaining a constant speed of light across all inertial frames. Observational thought experiments, such as the train and wall scenario, illustrate that contraction cannot occur in perpendicular directions without leading to logical contradictions. The preservation of transverse lengths is necessary to satisfy Lorentz transformation properties in both 1+1 and 2+1 dimensions.
PREREQUISITESStudents of physics, educators teaching special relativity, and researchers interested in the geometric properties of spacetime and Lorentz transformations.
HallsofIvy said:The simplest answer to your question is that velocity is a vector quantity. Any contraction due to velocity couldn't very well be perpendicular to the velocity because there is no velocity in that direction.
Mark M said:The reason length contraction occurs in the first place is to preserve a constant speed of light for all inertial frames of reference. If an observer says that you're moving in only the x direction, then lengths only need to contract along that direction for you to preserve the speed of light. Since you have no motion in the y or z direction, no length contraction is needed in the perpendicular directions.
bcrowell said:I like cepheid's argument, because it's rigorous and also conceptually simple.
bcrowell said:My only minor criticism is that it depends on a symmetry principle that wasn't invoked explicitly in #4. A's velocity relative to B and B's velocity relative to A point in opposite directions. It's possible that one of these directions produces contraction, and one expansion. To rule this out, we need to assume that space is isotropic.
bcrowell said:I would have to look more carefully, but cepheid's argument may be the same as the "nails on rulers" argument given here: https://www.physicsforums.com/showthread.php?p=2108296#post2108296
bcrowell said:Another argument is the following. In 1+1 dimensions, one can prove straightforwardly that Lorentz transformations must preserve area. (For a proof, see http://www.lightandmatter.com/html_books/0sn/ch07/ch07.html#Section7.2 , caption to figure j.) By a similar argument, Lorentz transformations in 2+1 dimensions must preserve volume. The only way that both of these can be true is if lengths in the transverse direction are preserved.
Hmmm, interesting. I don't think I have any problem with Einstein's original axiomatization, but even with his original axiomatization, it seems that MarkM's argument is backwards as you suggest (no offence intended), because the constancy of the speed of light is assumed, and then length contraction is derived as a consequence of it, not the other way around.bcrowell said:IMO this is logically backwards, since Einstein's 1905 axiomatization of SR is clearly a mistake, with the benefit of 107 years of historical hindsight. We see SR now as a theory of space, time, and causality, in which light plays no central role. More appropriate axiomatizations have been known since 1911; see our FAQ: https://www.physicsforums.com/showthread.php?t=534862
bcrowell said:I don't buy this at all. The electric field is a vector, but under a Lorentz boost, its component perpendicular to the boost can certainly change.
You mean then the EM field is not really a vector. Not the electric field.Muphrid said:Eh, misconception. The electric field is not really a vector. Its transformation follows from the full transformation of F_{\mu \nu}--i.e., from the transformations of the tx, ty, and tz planes. The electric field is a field of planes, and those planes' transformations are entirely in agreement with what you expect by boosting the individual vectors that span them.
Muphrid said:Eh, misconception. The electric field is not really a vector. Its transformation follows from the full transformation of F_{\mu \nu}--i.e., from the transformations of the tx, ty, and tz planes. The electric field is a field of planes, and those planes' transformations are entirely in agreement with what you expect by boosting the individual vectors that span them.
I asked about this symmetry assumption some time ago and at the end I was convinced that it is principle of relativity and nothing else.cepheid said:Interesting, I hadn't thought about that. What do you mean by "space is isotropic?" In this case it sounds like you are saying that, "the laws of physics are the same regardless of what direction you're moving in." Is that basically it?
cepheid said:Interesting, I hadn't thought about that. What do you mean by "space is isotropic?" In this case it sounds like you are saying that, "the laws of physics are the same regardless of what direction you're moving in." Is that basically it?
bcrowell said:I would say that it's the principle that the laws of physics don't distinguish any direction in space from any other. As a special case, you can apply it to a velocity vector.
peterspencers said:why does space time not contract uniformly in every direction around a fast moving object?
Yes but it's insufficient: the Lorentz transformations state that there is no vertical contraction, so that is what you want to prove (or make plausible). You demonstrated that based on the starting assumptions (equal speed of light etc), the vertical contraction factor must differ from the horizontal one. However, you could assume, for example, that the vertical contraction is gamma and the horizontal contraction gamma square. Then with zero time dilation your calculation will also work.peterspencers said:Ok so thankyou all for the help, I think I'm nearly there. I think I may have a clear understanding, is this a correct explanation...
If I have a light clock on a fast moving spacecraft being observed from earth, with a vertical set of mirrors (perpendicular to the motion of the overall clock) and a horizontal set of mirrors. The mirrors time the pulses of light, eminating from the same source. I then apply the equations for calculating the time it takes for the light pulses to bounce between each set of mirrors using the values of c = 10, v = 6 and l = 4.
I find initially that the horizontal bounces take 1.25 seconds and the vertical bounces take only 1 second. It's only when I apply the lorenz transformation to the length in the horizontal clock to give me new decreased value for l of 3.2, that I discover my time calculations for both mirrors agree on 1 second. I then conclude that the length must contract around the moving pulse of light to preserve its consistency for all frames of reference.
Is this correct?
I can't make sense of your setup. You haven't said what c, v and l are and you haven't said what their units are. Usually, we reserve the letter "c" to be the speed of light and "v" is a velocity. It's a little unusual for someone to set the speed of light to be 10, we usually make c = 1 to make the equations simpler. And you haven't said what equations you are using nor what l applies to.peterspencers said:Ok so thankyou all for the help, I think I'm nearly there. I think I may have a clear understanding, is this a correct explanation...
If I have a light clock on a fast moving spacecraft being observed from earth, with a vertical set of mirrors (perpendicular to the motion of the overall clock) and a horizontal set of mirrors. The mirrors time the pulses of light, eminating from the same source. I then apply the equations for calculating the time it takes for the light pulses to bounce between each set of mirrors using the values of c = 10, v = 6 and l = 4.
I find initially that the horizontal bounces take 1.25 seconds and the vertical bounces take only 1 second. It's only when I apply the lorenz transformation to the length in the horizontal clock to give me new decreased value for l of 3.2, that I discover my time calculations for both mirrors agree on 1 second. I then conclude that the length must contract around the moving pulse of light to preserve its consistency for all frames of reference.
Is this correct?
1. Your question is "Why does length contraction only occur parallel to the direction of motion?". Although you now suggest the contrary, I thought that you did not intend to discover what the Lorentz transformations state (contrary to valentin). As a matter of fact, they state that y=y' and z=z', so if that was your question and you did not want to prove what you assumed, then that was the answer and the end of this topic.peterspencers said:How will my calculation show length contraction with, zero time dillation? My calculation shows that time on the ship (ts) would be 0.8 and time from say Earth (te) would be 1. Also why would I want to make vertical contraction possible? The vertical clock dosent contract, the path the photon takes is extended, as per a little pythagoras, hence the time dilation.
Yes but it's insufficient: the Lorentz transformations state that there is no vertical contraction, so that is what you want to prove (or make plausible). You demonstrated that based on the starting assumptions (equal speed of light etc), the vertical contraction factor must differ from the horizontal one. However, you could assume, for example, that the vertical contraction is gamma and the horizontal contraction gamma square. Then with zero time dilation your calculation will also work.
The Lorentz transformations tell you directly that there is no length contraction parallel to the direction of motion; to find that out you don't need to make such a calculation. However, your question was why length contraction only occurs parallel to the direction of motion.peterspencers said:Why is my above calculation insufficient to explain length contraction? I don't follow the reasoning here, please could someone explain (to a lamen) if the above quote really does apply to my above calculation.
peterspencers said:why does space time not contract uniformly in every direction around a fast moving object?
harrylin said:- Your calculation doesn't show why that is the only feasible possibility based on the postulates.
Once more: if you assume that there is no time dilation but all distances contract by an additional factor γ (so that the length contracts by γ2 and the width by a factor γ), then your scenario will also work (the 'light distance' in both directions as measured with a clock is equal and the same in the rest frame and the moving frame).
I agree with that; however, based on what fact or assumption do you make that claim?peterspencers said:In my scenario I have a rest observation and a moving one. Where the clock is being observed in motion, velocity is an obvious consideration. As soon as velocity is acting upon the clock the equations for calculating the time change and time dilation becomes an inevitable and unavoidable factor. [..]