jiasyuen
- 25
- 0
$$\int \frac{3x-4}{x(1-x)}dx$$
$$=\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx$$
$$=-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx$$
$$=-4\ln\left | x \right |-\ln \left | 1-x \right |+c$$
$$\ln \frac{x^4}{\left | 1-x \right |}+c$$
But the correct answer is $$\ln \frac{\left | 1-x \right |}{x^4}+c$$.
Where's my mistake?
$$=\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx$$
$$=-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx$$
$$=-4\ln\left | x \right |-\ln \left | 1-x \right |+c$$
$$\ln \frac{x^4}{\left | 1-x \right |}+c$$
But the correct answer is $$\ln \frac{\left | 1-x \right |}{x^4}+c$$.
Where's my mistake?