MHB Why Does My Integral Calculation Yield the Inverse Result?

  • Thread starter Thread starter jiasyuen
  • Start date Start date
  • Tags Tags
    Integral Mistake
Click For Summary
The integral calculation of $$\int \frac{3x-4}{x(1-x)}dx$$ initially leads to the expression $$-4\ln|x| - \ln|1-x| + C$$. The mistake occurs during the integration of $$-\int \frac{1}{1-x}dx$$, where a sign error results in an incorrect final expression. The correct integration should yield $$\ln\left(\frac{|1-x|}{x^4}\right) + C$$ instead of the initially derived $$\ln\frac{x^4}{|1-x|} + C$$. Recognizing the sign error clarifies the discrepancy in the results. Understanding this integration step is crucial for accurate results in calculus.
jiasyuen
Messages
25
Reaction score
0
$$\int \frac{3x-4}{x(1-x)}dx$$

$$=\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx$$

$$=-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx$$

$$=-4\ln\left | x \right |-\ln \left | 1-x \right |+c$$

$$\ln \frac{x^4}{\left | 1-x \right |}+c$$

But the correct answer is $$\ln \frac{\left | 1-x \right |}{x^4}+c$$.

Where's my mistake?
 
Physics news on Phys.org
I agree with you up to here:

$$-4\int \frac{1}{x}\,dx-\int\frac{1}{1-x}\,dx$$

Then upon integrating, we obtain:

$$-4\ln|x|+\ln|1-x|+C$$

And then combining the two log terms, we get:

$$\ln\left(\frac{|1-x|}{x^4}\right)+C$$
 
jiasyuen said:
$$\int \frac{3x-4}{x(1-x)}dx$$

$$=\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx$$

$$=-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx$$

$$=-4\ln\left | x \right |-\ln \left | 1-x \right |+c$$

$$\ln \frac{x^4}{\left | 1-x \right |}+c$$

But the correct answer is $$\ln \frac{\left | 1-x \right |}{x^4}+c$$.

Where's my mistake?

You have a sign error when you integrated $$\displaystyle - \int \frac{1}{1-x}\, dx$$.

$$\displaystyle \int \dfrac{dx}{ax+b} = \dfrac{1}{a} \ln |ax+b|$$ - in your case because [math]a=-1[/math] you end up with a minus sign outside the integral
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
12
Views
3K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K