Why Does My Integration Over a Sphere Give Incorrect Results?

  • Thread starter Thread starter Addez123
  • Start date Start date
  • Tags Tags
    Integrate Sphere
Click For Summary
The integration over a sphere is yielding incorrect results due to the use of the wrong volume element. The correct volume element in spherical coordinates is dV = r^2 sin(θ) dr dθ dφ. The initial integration approach failed to include this factor, leading to an incorrect final result of 6Rπ² instead of the expected volume of 4πR³. The discussion clarifies that the issue arose from forgetting to incorporate r²sin(θ) during the conversion from Cartesian to spherical coordinates. This highlights the importance of using the correct volume element in spherical integrations.
Addez123
Messages
199
Reaction score
21
Homework Statement
Integrate 3 over a sphere with radius R.
Relevant Equations
Polar coordinates
##\iiint 3 dr d\rho d\phi##
The volume of a sphere is ##4\pi /3 r^3## so naturally the answer is ##4 \pi R^3##
But when I integrate I do:

##3 \iint r |_0^R d\rho d\phi##

##3R \int \rho |_0^{2\pi} d\phi##

##6R\pi * \phi |_0^\pi = 6R\pi^2##

What am I doing wrong?
 
Physics news on Phys.org
What is the actual homework statement? Please reproduce the full statement exactly as given.

You have also used the wrong volume element. The volume element in spherical coordinates is ##dV = r^2 \sin(\theta) dr \, d\theta\, d\phi##.
 
Orodruin said:
What is the actual homework statement? Please reproduce the full statement exactly as given.

You have also used the wrong volume element. The volume element in spherical coordinates is ##dV = r^2 \sin(\theta) dr \, d\theta\, d\phi##.
it wasn't a homework but I keep being forced to post it in homework section by mods.

Eitherway thanks, I forgot to add ##r^2sin(\theta)## when converting from normal coordinates.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...