Undergrad Why does the trace show up while computing unpolarized cross sections?

Click For Summary
The discussion focuses on the appearance of traces in the computation of unpolarized cross sections in quantum field theory, particularly in lepton pair production and Bhabha scattering. It highlights that the unpolarized cross sections can be expressed in terms of traces involving gamma matrices and projection operators. The key point is understanding how the positive energy projection operator leads to the trace formulation in the calculations. The user seeks clarification on why these traces appear consistently in the equations presented. Overall, the conversation aims to elucidate the mathematical foundation behind the traces in scattering processes.
JD_PM
Messages
1,125
Reaction score
156
TL;DR
I want to understand why the trace shows up while dealing with unpolarized cross sections.
I've been studying different scattering processes (from Mandl & Shaw QFT's book, chapter 8) and there's always a common step I do not understand: the showing-up of the trace. Let me give two specific examples.
  • Lepton Pair Production ##( e^+ (\vec p_1, r_1) + e^- (\vec p_2, r_2) \rightarrow l^+ (\vec p_1', s_1)+l^- (\vec p_2', s_2))##
Here the unpolarized cross section is given by

$$X = \frac{e^4}{4\Big[(p_1+p_2)^2\Big]^2} A_{(l) \alpha \beta} B_{(e)}^{\alpha \beta} \ \ \ \ (1)$$

Here both ##A_{(l) \alpha \beta}## and ##B_{(e)}^{\alpha \beta}## end up yielding traces; let's show ##A_{(l) \alpha \beta}## explicitly as an example.

$$A_{(l) \alpha \beta}=\sum_{s_1} \sum_{s_2} \Big[ \bar u_{s_2} (\vec p_2') \gamma_{\alpha} v_{s_1} (\vec p_1'))(\bar v_{s_1}(\vec p_1')\gamma_{\beta} u_{s_2} (\vec p_2'))\Big]_{(l)}=Tr\Big[\frac{\not{\!p_2'}-m_l}{2m_l} \gamma_{\alpha} \frac{\not{\!p_1'}-m_l}{2m_l}\gamma_{\beta}\Big] \ \ \ \ (2)$$
  • Bhabha scattering (##e^+ (\vec p_1, r_1)+e^- (\vec p_2, r_2) \rightarrow e^+ (\vec p_1', s_1) + e^+ (\vec p_2', s_2)##)
Let's take only a term of the total unpolarized cross section for the Bhabha scattering as an example

$$X_{ab} = \frac{-e^4}{4(p_1-p_1')^2(p_1+p_2)^2} \sum_{spins} \Big[ (\bar u (\vec p_2') \gamma_{\alpha} u (\vec p_2))(\bar u (\vec p_2)\gamma_{\beta} v (\vec p_1))(\bar v (\vec p_1) \gamma^{\alpha} v (\vec p_1'))(\bar v (\vec p_1')\gamma^{\beta} u (\vec p_2')\Big]=\frac{-e^4}{4(p_1-p_1')^2(p_1+p_2)^2} Tr\Big[\frac{\not{\!p_2'}+m}{2m} \gamma_{\alpha}\frac{\not{\!p_2'}+m}{2m} \gamma_{\beta}\frac{\not{\!p_1}-m}{2m} \gamma^{\alpha}\frac{\not{\!p_1'}-m}{2m} \gamma^{\beta}\Big] \ \ \ \ (3)$$Thus all boils down to understand why

$$X= \frac 1 2 \Lambda_{\delta \alpha}^+ (\mathbf p') \Gamma _{\alpha \beta} \Lambda_{\beta \gamma}^+ (\mathbf p) \tilde \Gamma _{\gamma \delta}=\frac 1 2 Tr \Big[\Lambda^+ (\mathbf p') \Gamma \Lambda^+ (\mathbf p) \tilde \Gamma \Big] \ \ \ \ (4)$$Where the positive energy projection operator satisfies the following equation$$\Lambda_{\alpha \beta}^+ (\mathbf p) = \Big( \frac{ \not{\!p}+m}{2m} \Big)_{\alpha \beta} = \sum_{r=1}^2 u_{r \alpha} (\mathbf p) \bar u_{r \beta} (\mathbf p) \ \ \ \ (5)$$

But I do not see how to show that Eq. 5 is the reason why the trace shows up in Eq. 2, Eq. 3 and Eq. 4
Any help is appreciated.

Thank you
 
Physics news on Phys.org
$$A_{ij}B_{ji} = (AB)_{ii} =\operatorname{Tr}(AB)$$

More details :smile:
 
  • Like
Likes vanhees71

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K