- #1
JD_PM
- 1,131
- 158
- TL;DR Summary
- I want to understand how to get the named equations below from Mandl & Shaw book.
I was studying the photon polarization sum process (second edition QFT Mandl & Shaw,https://ia800108.us.archive.org/32/items/FranzMandlGrahamShawQuantumFieldTheoryWiley2010/Franz%20Mandl%2C%20Graham%20Shaw-Quantum%20Field%20Theory-Wiley%20%282010%29.pdf) and got stuck in how to get certain equations.
We work in a gauge in which the polarization vectors of the external photons are of the form
$$\epsilon = (0, \vec \epsilon), \ \ \ \ \epsilon' = (0, \vec \epsilon') \tag 1$$
The 4 products ##\epsilon k## and ##\epsilon'k'## are
$$\epsilon k=-\vec \epsilon \cdot \vec k =0, \ \ \ \ \epsilon' k'=-\vec \epsilon' \cdot \vec k'=0 \tag 2$$
Let us work in the LAB frame.Then ##p=(m, 0, 0, 0)## Thus we have
$$p \epsilon = p \epsilon'=0 \tag 3$$
Given the anticommutation relation ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}## and the Dirac equation ##(\not{\!p}-m)u(\vec p)=0## we get
$$\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u, \ \ \ \ \not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u \tag 4$$
Given the Feynman Amplitude ##\mathscr{M}=\mathscr{M}_a+\mathscr{M}_b##, where
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} (\not{\!p}+\not{\!k}+m) \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = i e^2 \frac{\bar u' \not{\!\epsilon} (\not{\!p}-\not{\!k'}+m) \not{\!\epsilon'} u}{2(pk')} \tag 5$$
##\mathscr{M}_a## and ##\mathscr{M}_b## simplify to
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 6$$
My questions are:
1) How to get Eqs ##(4)##
I almost get ##\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u##; based on the Dirac equation we get ##\not{\!p}u(\vec p)=mu(\vec p)##, so we simply multiply by ##\not{\!\epsilon'}## (on the left side of the equation). However, note I do not get the negative sign.
How to get ##\not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u##? I guess we have to use ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}##, but how? I mean, all we can get out of the anticommutation relation is that ##\Big(\gamma^0\Big)^2=1## and ##\Big(\gamma^i\Big)^2=-1##, where ##i=1,2,3##.
2) How to get Eqs ##(6)##
Based on ##(1), (2)## and ##(3)## I get ##\not{\!\epsilon'} \not{\!p}=0, \not{\!\epsilon} \not{\!p}=0, \not{\!\epsilon'} m=0, \not{\!\epsilon} m=0##. So I end up getting
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} \not{\!k} \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 7$$
Note I get the same ##\mathscr{M}_b## but not the same ##\mathscr{M}_a##. Is it a typo on the book or I am wrong?
Any help is appreciated.
PS: I asked thie question https://math.stackexchange.com/questions/3703823/rewriting-feynman-amplitudes-and-the-dirac-equation but got not response.
We work in a gauge in which the polarization vectors of the external photons are of the form
$$\epsilon = (0, \vec \epsilon), \ \ \ \ \epsilon' = (0, \vec \epsilon') \tag 1$$
The 4 products ##\epsilon k## and ##\epsilon'k'## are
$$\epsilon k=-\vec \epsilon \cdot \vec k =0, \ \ \ \ \epsilon' k'=-\vec \epsilon' \cdot \vec k'=0 \tag 2$$
Let us work in the LAB frame.Then ##p=(m, 0, 0, 0)## Thus we have
$$p \epsilon = p \epsilon'=0 \tag 3$$
Given the anticommutation relation ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}## and the Dirac equation ##(\not{\!p}-m)u(\vec p)=0## we get
$$\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u, \ \ \ \ \not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u \tag 4$$
Given the Feynman Amplitude ##\mathscr{M}=\mathscr{M}_a+\mathscr{M}_b##, where
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} (\not{\!p}+\not{\!k}+m) \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = i e^2 \frac{\bar u' \not{\!\epsilon} (\not{\!p}-\not{\!k'}+m) \not{\!\epsilon'} u}{2(pk')} \tag 5$$
##\mathscr{M}_a## and ##\mathscr{M}_b## simplify to
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 6$$
My questions are:
1) How to get Eqs ##(4)##
I almost get ##\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u##; based on the Dirac equation we get ##\not{\!p}u(\vec p)=mu(\vec p)##, so we simply multiply by ##\not{\!\epsilon'}## (on the left side of the equation). However, note I do not get the negative sign.
How to get ##\not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u##? I guess we have to use ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}##, but how? I mean, all we can get out of the anticommutation relation is that ##\Big(\gamma^0\Big)^2=1## and ##\Big(\gamma^i\Big)^2=-1##, where ##i=1,2,3##.
2) How to get Eqs ##(6)##
Based on ##(1), (2)## and ##(3)## I get ##\not{\!\epsilon'} \not{\!p}=0, \not{\!\epsilon} \not{\!p}=0, \not{\!\epsilon'} m=0, \not{\!\epsilon} m=0##. So I end up getting
$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} \not{\!k} \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 7$$
Note I get the same ##\mathscr{M}_b## but not the same ##\mathscr{M}_a##. Is it a typo on the book or I am wrong?
Any help is appreciated.
PS: I asked thie question https://math.stackexchange.com/questions/3703823/rewriting-feynman-amplitudes-and-the-dirac-equation but got not response.