B Why doesn't the Navier-Stokes equation have a solution?

AI Thread Summary
The Navier-Stokes equations lack a general closed-form solution for all initial conditions, particularly in turbulent flows, which complicates their analysis. While specific solutions exist for certain flow scenarios, the complexity of turbulence and sensitivity to initial conditions mean that numerical solutions are often approximations. The discussion highlights that the absence of an analytical solution does not imply that solutions do not exist; rather, they may only be achievable through numerical methods. The challenges of finding solutions are compounded by the chaotic nature of turbulent flows. Overall, the quest for a comprehensive understanding of the Navier-Stokes equations remains a significant mathematical and scientific challenge.
Sawawdeh
Messages
1
Reaction score
0
Why the navier-stokes equation don't have a solution ?
 
Physics news on Phys.org
Sawawdeh said:
Why the navier-stokes equation don't have a solution ?
Because it’s hard enough that so far no one has figured it out. Perhaps no one ever will.

Google for “Millennium prize navier-stokes” for more about what has to be figured out.
 
The Navier Stokes equations do have solutions for certain specific flows.
 
  • Like
  • Informative
Likes jbriggs444, Vanadium 50, vanhees71 and 2 others
If we don't know the solution(s), it does not mean that the equation does not have solutions, does it?
 
Classically the word solution often refer to a closed form solution, i.e. a "simple" symbolic solution general for large set of initial conditions and parameters, and in that sense we know that there are some (turbulent) flows that cannot have such a solution even if the actual flow dynamics still satisfy the equations.
However, in context of numerical analysis (i.e. in this case computational fluid dynamics) the word solution more imply any possible solutions achievable by numerical means so here it would make sense to say that a specific turbulent flow is a solution to the equations. Since turbulent flows has sensitivity to initial conditions this usually means the numerical solution can only be an approximation that share some statistical measure with the exact solution but also that the two will eventually diverge over time.
 
  • Like
Likes sophiecentaur and nasu
@Sawawdeh It's never a surprise when an analytical solution to a problem doesn't exist. We start our Maths and Science education being presented with a number of situations and equations that are soluble analytically and exactly (you have to be encouraged initially) but, once you get into Integral Equations you find that most situations can only be dealt with numerically. In the recent past (pre-digital) people used vast books of tables of integrals to calculate approximate answers for problems.
Then someone discovered Chaos. . . . . .
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top