Why doesn't this solution work? (Springs and Conservation of Energy)

AI Thread Summary
The discussion revolves around the application of conservation of energy in analyzing a trampoline's mechanics. The initial approach to find the initial velocity using energy equations is contrasted with a force-based method, which incorrectly assumes constant acceleration. It is clarified that the force exerted by the trampoline increases as it stretches, leading to variable acceleration. The correct energy equation should account for the total height change, combining both the height of the trampoline and its compression. The conversation emphasizes that questioning methods is a valuable part of learning physics.
CCoffman
Messages
1
Reaction score
0
Homework Statement
A 67 kg trampoline artist jumps vertically upward from the top of a platform with a speed of 4.7 m/s from a height of 2.0 meters. If the trampoline behaves like a spring of spring constant ##5.8×10^4## N/m , what is the distance he depress it?
Relevant Equations
##U_i + K_i + \text{[Other initial energies] =} U_f + K_f + \text{[Other final energies], }F = kx##
I already know the solution to this, all you do is set the height of the top of the trampoline to 0 and solve for initial velocity so the equation for the conservation of energy $$mgh_0 + \frac{1}{2}mv_0^2 + \frac{1}{2}kx_0^2 = mgh_1 + \frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2$$ becomes $$\frac{1}{2}mv_0^2 = mgh_1 + \frac{1}{2}kx_1^2$$ All we do is solve for the initial velocity using a kinematic equation and then find the distance the spring/trampoline is depressed using the quadratic formula, giving us x = -.28 meters.

On my first attempt i tried to take the simpler rout of using $$F = kx$$ $$ma = kx$$ $$\frac{67*-9.8}{5.8*10^4} = -.011$$ I am wondering why this is incorrect. The acceleration should stay the same, at least the initial acceleration before the energy is transferred to the spring. I am sorry if this is a dumb question, i just started physics and... i don't understand anything :/
 
Physics news on Phys.org
CCoffman said:
I am wondering why this is incorrect.
That will just give you that the spring would compress 1.1 cm when the person is standing still on the trampoline.
 
CCoffman said:
$$\frac{1}{2}mv_0^2 = mgh_1 + \frac{1}{2}kx_1^2$$
This should be
##\frac{1}{2}mv_0^2 = mg(h_1+x_1) + \frac{1}{2}kx_1^2##
because the total height-change is ##h_1+ x_1##. But doing this makes only a small difference to the answer if ##x_1 \ll h_1##; also it means you would need to solve a more complicated quadratic equation.

CCoffman said:
The acceleration should stay the same, at least the initial acceleration before the energy is transferred to the spring.
No. Constant acceleration requires a constant force (F=ma). The acceleration is not constant while the trampoline (spring) is being stretched.

That's because the upwards force from the trampoline increases the more it is stretched (F = -kx and x is changing).

The trampoliner, while in contact with the trampoline, is comparable to a mass hanging on a spring in simple harmonic motion if you have met this before. A bit of calculus is needed for this ‘force method’.

CCoffman said:
Im sorry if this is a dumb question,
It's not a dumb question. And trying to check the consistency of two different methods to solve the same problem is an excellent learning technique.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top