A Why don't we multiply generalized functions?

wrobel
Science Advisor
Insights Author
Messages
1,121
Reaction score
978
Because it drives to contradictions. Here is a nice example from E. Rosinger Generalized solutions of nonlinear PDE.

We can multiply generalized functions from ##\mathcal D'(\mathbb{R})## by functions from ##C^\infty(\mathbb{R})##. This operation is well defined. For example $$x\delta(x)=0\in \mathcal D'(\mathbb{R}),\quad x\cdot\frac{1}{x}=1\in \mathcal D'(\mathbb{R}),\quad \frac{1}{x}\in \mathcal D'(\mathbb{R}).$$
On the other hand ##C^\infty(\mathbb{R})\subset \mathcal D'(\mathbb{R})##

Ok then:)
$$\delta=\Big(x\cdot\frac{1}{x}\Big)\cdot\delta=\frac{1}{x}\cdot(x\delta)=0.$$
 
Mathematics news on Phys.org
I have interpreted ##x \delta(x)=0## as for support of good behavior function, i.e.
\int f(x) x \delta(x) dx= 0
for f(x) such that f(0) is finite. 1/x does not satisfy it.
 
This example shows that you can not define a binary operation of ##\mathcal D'(\mathbb R)\times \mathcal D'(\mathbb R)## with values in ##\mathcal D'(\mathbb R) ## such that
1) this operation acts on ##C^\infty(\mathbb{R})\times \mathcal D'(\mathbb R)## in the standard way;
2) this operation possesses the standard properties of the arithmetic multiplication
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
1
Views
999
Back
Top