Why is a semigroup called a semigroup?

  • Context: Graduate 
  • Thread starter Thread starter airpocket
  • Start date Start date
Click For Summary
SUMMARY

A semigroup is named for its position in the hierarchy of algebraic structures, being "halfway" to a group. It consists of a set with a binary operation that is associative, which is one property. In contrast, a monoid includes an identity element, and a group includes an inverse for each element, totaling three properties. The discussion highlights the importance of closure as an axiom, suggesting that if included, a semigroup would have two properties, aligning it more closely with the logical naming conventions of mathematical terminology.

PREREQUISITES
  • Understanding of algebraic structures, specifically groups and semigroups.
  • Familiarity with binary operations and their properties.
  • Knowledge of mathematical terminology and axioms, particularly closure.
  • Basic comprehension of associative operations in mathematics.
NEXT STEPS
  • Research the properties of algebraic structures, focusing on semigroups and groups.
  • Learn about the role of closure in algebraic systems and its implications.
  • Explore the definitions and examples of magmas, semigroups, monoids, and groups.
  • Investigate how mathematical terminology evolves and its logical foundations.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the logical structure of mathematical terminology will benefit from this discussion.

airpocket
Messages
4
Reaction score
0
This is a stupid question, but perhaps somebody else has had the same stupid question before and found an answer.

Why is a <b>semi</b>group so named? If a group were a set and a binary operation satisfying 2 additional properties, then semigroup would be the perfect name, since it satisfies only 1 additional property, but that's not the case.

Is there some logic to the name? Is it because \frac{3}{2} = 1 in integer arithmetic ;-)? Wikipedia and other sources are no help, and I'm hoping there is a logic to the name, as mathematical terminology is usually extremely logical.
 
Physics news on Phys.org
It's called that because it's kind of half way to being a group. Think of it like this:

1. You have a set S with a binary operation S x S -> S, then we call that a magma.

2. Make that operation associative, then we call it a semigroup.

3. Include an identity element of the operation within the set, then it becomes a monoid.

4. Include an inverse element for each element under the operation within the set, then it becomes a group.

And so on...
 
Thanks for the reply. You labeled your points 1 to 4 but you could just as easily split set and binary operation on the set into 2 separate points and then you'd have 1 through 5 (and semigroup=3, group=5).

And that doesn't change the fact that the standard formulation is 1 property for a semigroup, 2 for a monoid, and 3 for a group.

If it were the case that originally the binary operation on the set was explicitly counted as a property and there really were 2 for a semigroup and 4 for a group, then your explanation would be perfect, but I haven't seen it explained in that way before, so it's unconvincing.

It doesn't really matter, but often I've found mathematical terminology to be perfectly precise, and this seems to fall short of that standard.

Any other thoughts?

p.s. Apologies for screwing up the formatting in the first post. I realize now that HTML doesn't work, but I'm not sure why the LaTeX got escaped instead of showing up. It doesn't seem that I can edit it to fix it.
 
I think closure was originally accepted as a proper axiom, but it is kinda self-evident in the definition of the binary operation and its domain and range. The reason for specifying closure is because it is an axiom that can be overlooked when checking to see if an algebraic system is a group or not. (e.g. closure of integers under division).

If we take closure as a meaningful axiom, then a semigroup has 2 properties, and a group has 4. What do you think? It doesn't quite fit the "perfectly precise" (and I agree, maths terminology often is exactly that), but I'd say it's good enough. I am a physicist, however...
 
masudr said:
If we take closure as a meaningful axiom, then a semigroup has 2 properties, and a group has 4. What do you think? It doesn't quite fit the "perfectly precise" (and I agree, maths terminology often is exactly that), but I'd say it's good enough. I am a physicist, however...

Yeah, closure as an explicit axiom does make it sound like a much better match to me, so that's probably it if you've seen it mentioned like that as an axiom. You've convinced me.

Thanks again for your help.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K