Why is it important to convert angle units when using trigonometric functions?

  • Context: Undergrad 
  • Thread starter Thread starter fog37
  • Start date Start date
  • Tags Tags
    Function Input Trig
Click For Summary
SUMMARY

The discussion emphasizes the critical importance of converting angle units when using trigonometric functions, specifically sine and cosine. It establishes that both radians and degrees represent the same angle but are numerically different, as demonstrated by the equivalence of ##\sin(\pi/4)## and ##\sin(45^\circ)##. The conversation highlights that calculators typically convert degree inputs to radians before computation, which can lead to significant errors if the user fails to input the correct unit. The necessity of understanding this conversion is crucial for accurate mathematical modeling and programming, particularly in applications like Java for graphical representations.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine and cosine.
  • Familiarity with angle measurement units: degrees and radians.
  • Basic knowledge of programming concepts, particularly in Java.
  • Experience with mathematical modeling and graphical plotting.
NEXT STEPS
  • Research the differences between radians and degrees in trigonometric calculations.
  • Learn about the implementation of trigonometric functions in programming languages like Java.
  • Explore common pitfalls in angle unit conversions in mathematical modeling.
  • Study the unit circle and its application in understanding trigonometric functions.
USEFUL FOR

Mathematicians, software developers, data scientists, and anyone involved in programming or graphical representations that utilize trigonometric functions.

fog37
Messages
1,566
Reaction score
108
TL;DR
Trig functions and their input argument
Hello,

Periodic trigonometric functions, like sine and cosine, generally take an angle as input to produce an output. Functions do that: given an input they produce an output.

Angles are numerically given by real numbers and can be expressed either in radians or degrees (just two different units). We know that ##\pi/4## and ##45^\circ## are the exact same angle even if they numerically different. How can I clearly explain that the function ##sin(x)## produces the same numerical result, i.e. ##sin(\pi/4) = sin(45^\circ)## even if, numerically, the inputs are the same?

A function, in general, produced a different numerical output if he input is provided a different unit. For example, the circumference ##C=2\pi r## will be different in ##r## is expressed either in ##cm## or ##m##. But the trig functions don't...

Thanks!
 
Mathematics news on Phys.org
fog37 said:
A function, in general, produced a different numerical output if he input is provided a different unit. For example, the circumference ##C=2\pi r## will be different in ##r## is expressed either in ##cm## or ##m##. But the trig functions don't...
cm and m aren't really different units except inasmuch as the "centi" simply means 1/100th.

A 10cm circumference is the same length as a .1m circumference, just expressed in a more readable way.
 
  • Like
Likes   Reactions: fog37
I think these can be demonstrated by the definition of 45 degrees as 1/8 of 360 degrees (degrees in a circle) just as ##\pi/4## is 1/8 of ##2\pi## radians (radians in a circle).

Hence the sin of this angle however it is represented must have the same value.
 
  • Like
Likes   Reactions: fog37
DaveC426913 said:
cm and m aren't really different units except inasmuch as the "centi" simply means 1/100th.

A 10cm circumference is the same length as a .1m circumference, just expressed in a more readable way.
True. I guess I should have used meters and yards.
 
jedishrfu said:
I think these can be demonstrated by the definition of 45 degrees as 1/8 of 360 degrees (degrees in a circle) just as ##\pi/4## is 1/8 of ##2\pi## radians (radians in a circle).

Hence the sin if this angle however it is represented must have the same value.
Yes, the sine function is, in the context of a right triangle, a ration between one side and the hypotenuse.

What remains difficult to explain is that, conceptually the two angle measurements are the same but they are numerically different. The sine function seems to know that, under the hood, and produce the same output...
 
Its also true that you can use a unit circle to geometrically compute the sin and cos of an angle. The fact that the angle is basically 1/8 of the circle is the same as saying its 45 degrees or ##\pi/4##.

With respect to the sin() on your calculator always coming up with the same value that's just good programming on the calculator programmer's part. He/she likely converted all degree values to radians prior to computing the sin() via some mathematical series calculation which insures a good value for the sine.
 
There is no function ##sin() ## where ##sin(\pi/4) = sin(45^{\circ})##. There are two different functions, one which expects a radian input and another which expects a degree input. You will see this if you ever give the wrong input to a function. If we use subscripts to distinguish between the two functions, then you can say that ##sin_{radian}(\pi/4) = sin_{degree}(45^{\circ})##
 
ON the calculator you must choose what form of angular measure you will be using. Some famous and not-so-famous mistakes have been made someone put in the wrong input value.

I recall drawing a rosette plot for work in Java and using sin / cos to compute x,y values (polar coords to x,y coords) for the angular data. Instead of getting a nice squiggly circle, I got this mass of tangled lines.

It was then that I realized I forgot to convert my degree values into radian values since the sin()/cos() expected radian values. My 360 degree value was interpretted as 360 radians which is roughly circling the circle 60 times before plotting my x,y value.

Some of the famous ones:

https://www.bbc.com/news/magazine-27509559
 
  • Like
Likes   Reactions: FactChecker
jedishrfu said:
ON the calculator you must choose what form of angular measure you will be using. Some famous and not-so-famous mistakes have been made someone put in the wrong input value.

I recall drawing a rosette plot for work in Java and using sin / cos to compute x,y values (polar coords to x,y coords) for the angular data. Instead of getting a nice squiggly circle, I got this mass of tangled lines.

It was then that I realized I forgot to convert my degree values into radian values since the sin()/cos() expected radian values. My 360 degree value was interpretted as 360 radians which is roughly circling the circle 60 times before plotting my x,y value.

Some of the famous ones:

https://www.bbc.com/news/magazine-27509559
I can second that. When you see wild scattered results from some geometry that you expected to be smooth, it is a good idea to look for degrees being input to a trig function that thinks it is radians.
 
  • Haha
Likes   Reactions: jedishrfu

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
799
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
10K
Replies
11
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K