f95toli
Science Advisor
- 3,509
- 1,072
Note also that length is not unique in any way; ALL the base units (except the second) depends on time.
E.g. the Ampere can be realized by counting the number of charges that passes per second.
The reason for this reliance on time (=the realization of the second) is that this is by far the easiest quantity to measure; a regular atomic clock is accurate to 1 part on 10^15 or so; and the new optical clocks that are likley to replace the Cs fountains in a few years are at least 3 orders of magnitude better than that.
For the other units the realisations are typically at best accurate at a level of 1 part in 10^8. Hence,, time is much, much easier to measure than any other quantity and the fact that you need an accurate clock to measure e.g. electrical current is not going to be a significant source of errors.
Also, it is important to keep in mind that the SI is a practical system; having a "philosophically" satisfying system is useful unless you can also use it to calibrate instrumentation. The BIMP is ultimately controlled by a collection of governments and they are more interested in having a system that works in the real work than one that is "tidy".
Lastly, metrologists do NOT talk about "fundamental units"; it should be "base units" which is NOT the same thing. I don't think anyone would argue that there is anything "fundamental" about say luminous intensity, but it is a base unit
E.g. the Ampere can be realized by counting the number of charges that passes per second.
The reason for this reliance on time (=the realization of the second) is that this is by far the easiest quantity to measure; a regular atomic clock is accurate to 1 part on 10^15 or so; and the new optical clocks that are likley to replace the Cs fountains in a few years are at least 3 orders of magnitude better than that.
For the other units the realisations are typically at best accurate at a level of 1 part in 10^8. Hence,, time is much, much easier to measure than any other quantity and the fact that you need an accurate clock to measure e.g. electrical current is not going to be a significant source of errors.
Also, it is important to keep in mind that the SI is a practical system; having a "philosophically" satisfying system is useful unless you can also use it to calibrate instrumentation. The BIMP is ultimately controlled by a collection of governments and they are more interested in having a system that works in the real work than one that is "tidy".
Lastly, metrologists do NOT talk about "fundamental units"; it should be "base units" which is NOT the same thing. I don't think anyone would argue that there is anything "fundamental" about say luminous intensity, but it is a base unit