Well, while this is true as stated, there is a sense in which it is meaningful to talk about such a limit. Given any physical set up (distances in terms of reference objects, speeds define from these plus a notion of ideal clock), then as c is taken to approach infinity, the error of any observation compared to Galilean approaches zero. This is important because having speeds very low compared to c does not make relativistic effects arbitrarily small. No matter how small the speeds compared to c, if the system is large enough, relativistic effects are also large. Both speeds and distances must be 'small' compared to c or ct for relativistic effects to be insignificant.