MHB Why Is No Work Done Against the Weight of a Skier Moving Down a Slope?

Click For Summary
The discussion focuses on the application of the work-energy principle in analyzing the forces acting on a skier moving down a slope. It emphasizes that no work is done against the skier's weight because the gravitational force acts parallel to the displacement, resulting in no opposing work. The conversation highlights the importance of considering all forces, including friction and the pulling force, to determine net work. It also notes that energy conservation cannot be applied due to the presence of friction, necessitating a vectorial force analysis. Understanding these concepts is crucial for solving problems related to work and energy in this context.
Needhelp2
Messages
17
Reaction score
0
Hi!
I am finding the work-energy principle and idea of total mechanical energy hard to apply to finding the work done against/by a particular force.
For example in the question below, why is there no work done against the weight of the skier acting down the slope?

Any help would be great!
Thanks :D
 

Attachments

  • m2.png
    m2.png
    14.7 KB · Views: 109
Mathematics news on Phys.org
So don't forget the sign conventions with work. Since work done by a constant force is actually defined by $W= \vec{F} \cdot \vec{d}=F\,d\, \cos(\theta),$ where $\theta$ is the angle between the force vector $\vec{F}$ and the displacement vector $\vec{d}$, what you are asked to do in this problem is combine two different expressions for work (definition and the work-energy theorem) to find the work done by the pulling force.

I would recommend a free-body diagram for this problem. One thing you know: the increase in speed from $2$ m/s to $5$ m/s gives you a change in kinetic energy, which is equal to the net work. The net work comes from the net force. If you can find the net force, you could probably find the pulling force, so long as you know all the other forces. Then what could you do?
 
Ackbach said:
So don't forget the sign conventions with work. Since work done by a constant force is actually defined by $W= \vec{F} \cdot \vec{d}=F\,d\, \cos(\theta),$ where $\theta$ is the angle between the force vector $\vec{F}$ and the displacement vector $\vec{d}$, what you are asked to do in this problem is combine two different expressions for work (definition and the work-energy theorem) to find the work done by the pulling force.

I would recommend a free-body diagram for this problem. One thing you know: the increase in speed from $2$ m/s to $5$ m/s gives you a change in kinetic energy, which is equal to the net work. The net work comes from the net force. If you can find the net force, you could probably find the pulling force, so long as you know all the other forces. Then what could you do?

you haven't mentioned the gain in GPE the skier would have or the work done against the friction? Where would these come in?
 
Needhelp said:
you haven't mentioned the gain in GPE the skier would have

Well, the problem here is that energy is not conserved, since there is friction. Therefore, a conservation of energy approach is invalid. Hence, you must analyze the forces vectorially. Gravity definitely plays a role, but it'll show up in your force analysis, rather than as a gravitational potential energy.

or the work done against the friction?

There are three forces doing work (that is, there are three forces that are either parallel or anti-parallel to the displacement): the pulling force (doing positive work), the friction force (doing negative work), and the component of gravity that is directed down the incline (doing negative work). Those all have to show up when you write down the net work.

Where would these come in?

Hopefully, I've answered this question. But by all means, if you're still stuck, keep pushing me with more questions.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 77 ·
3
Replies
77
Views
5K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 48 ·
2
Replies
48
Views
5K