I Why is Scalar Massless Wave Equation Conformally Invariant?

user1139
Messages
71
Reaction score
8
TL;DR Summary
I wish to gain a physical intuitive understanding as to why the scalar massless wave equation is conformally invariant.
It can be shown mathematically that the scalar massless wave equation is conformally invariant. However, doing so is rather tedious and muted in terms of physical understanding. As such, is there a physically intuitive explanation as to why the scalar massless wave equation is conformally invariant?
 
Last edited:
Physics news on Phys.org
It's easier seen in energy-momentum representation, i.e., with
$$\phi(x)=\int_{\mathbb{R}^4} \mathrm{d}^4 p \exp(-\mathrm{i} p_{\mu} x^{\mu}) \tilde{\phi}(p)$$
the solution of the massless wave equation implies that ##p_{\mu} p^{\mu}=0##, i.e., ##p^{\mu}## must be light-like.

Obviously the equation is invariant under the Poincare group, i.e., under Lorentz boosts, rotations and translations, but here you only need to preserve the light cone in momentum space not the Minkowski product between all vectors. So besides the Lorentz boosts and rotations (building together the proper orthochronous Lorentz). The corresponding symmetry group mapping light cones to themselves is larger, and that's the conformal group. Wikipedia gives a nice introduction

https://en.wikipedia.org/wiki/Conformal_symmetry
 
Thomas1 said:
is there a physically intuitive explanation as to why the scalar massless wave equation is conformally invariant?
One way to look at it is that a massless field does not have any built-in scale of energy or length; waves of the field of all possible frequencies/wavelengths are possible and "look the same" from the standpoint of the physics of how they propagate. The only invariant about the propagation of the waves is the light cones. So the invariance property you would expect the wave equation to have is the one that only preserves the light cones, i.e., conformal invariance.

A massive field, by contrast, has a built-in energy/length scale, given by its invariant mass. So you would expect its wave equation to only be invariant under the more restricted group of transformations that preserves, not just the light cones, but the invariant mass, i.e., the Poincare group.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top