MHB Why Is the Function Bounded in the Extreme Value Theorem Proof?

Click For Summary
The discussion centers on the proof of the Extreme Value Theorem, specifically addressing the boundedness of functions within the interval [a,b]. It clarifies that the Bolzano-Weierstrass theorem applies because the sequence defined in [a,b] is inherently bounded by the interval's endpoints. Additionally, it emphasizes that a continuous function on a compact set ensures that the image of the function is also compact, which implies it is closed and bounded. This understanding resolves the confusion about the necessity of boundedness in the proof. The key takeaway is that the properties of continuity and compactness are crucial in establishing the boundedness of the function's values.
Amer
Messages
259
Reaction score
0
I was reading Wiki, I met a problem in understanding the the proof of boundedness theorem exactly when they said

"Because [a,b] is bounded, the Bolzano–Weierstrass theorem implies that there exists a convergent subsequence"

but Bolzano theorem state that if the sequence is bounded, which is not necessary in our case.
What I miss here

And in the alternative proof they said
"The set {yR : y = f(x) for some x ∈ [a,b]} is a bounded set."
f is continuous at [a,b] but how should it be bounded it is clear but how to prove that ?

Thanks
 
Last edited:
Physics news on Phys.org
Re: Extreme vlaue theore Proof

but Bolzano theorem state that if the sequence is bounded, which is not necessary in our case.
Of course it is! If the sequence is defined in $[a,b]$, this means that for all $n \in \mathbb{N}$ we have $x_n \in [a,b]$, which in turn means that $a \leq x_n \leq b$.

As for the other, it is using the fact that if a function $f: X \to \mathbb{R}$ is continuous, then if $X$ is compact you have that $f(X)$ is compact. This of course means that $f(X) = \{ y \in \mathbb{R} : y = f(x) \text{ for some }x \in [a,b] \}$ is closed and bounded.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K