MHB Why Is the Function Bounded in the Extreme Value Theorem Proof?

Amer
Messages
259
Reaction score
0
I was reading Wiki, I met a problem in understanding the the proof of boundedness theorem exactly when they said

"Because [a,b] is bounded, the Bolzano–Weierstrass theorem implies that there exists a convergent subsequence"

but Bolzano theorem state that if the sequence is bounded, which is not necessary in our case.
What I miss here

And in the alternative proof they said
"The set {yR : y = f(x) for some x ∈ [a,b]} is a bounded set."
f is continuous at [a,b] but how should it be bounded it is clear but how to prove that ?

Thanks
 
Last edited:
Physics news on Phys.org
Re: Extreme vlaue theore Proof

but Bolzano theorem state that if the sequence is bounded, which is not necessary in our case.
Of course it is! If the sequence is defined in $[a,b]$, this means that for all $n \in \mathbb{N}$ we have $x_n \in [a,b]$, which in turn means that $a \leq x_n \leq b$.

As for the other, it is using the fact that if a function $f: X \to \mathbb{R}$ is continuous, then if $X$ is compact you have that $f(X)$ is compact. This of course means that $f(X) = \{ y \in \mathbb{R} : y = f(x) \text{ for some }x \in [a,b] \}$ is closed and bounded.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K