Why is the integral of the Dirac delta distribution equal to unity?

Click For Summary
The discussion clarifies that the Dirac delta function is a distribution, not a traditional function, which explains why its integral over the entire real line equals unity. It is conceptualized as the limit of a normal distribution with zero variance, where the mean can remain at zero while the variance approaches zero, leading to an infinitely high peak. This peak represents the Dirac delta function, which retains unit area under the curve despite its infinitesimal width. The integral of the Dirac delta function can be understood through the behavior of Gaussian functions as their variance decreases. Overall, the Dirac delta serves as a useful mathematical tool in various applications, particularly in physics and probability theory.
SW VandeCarr
Messages
2,193
Reaction score
77
Previously I posted a question on the Dirac delta function and was informed it was not a true function, but rather a distribution. However, I have to admit I still did not understand why its integral (neg inf to pos inf) is unity. I've thought about this and came up with the following:

Consider a normal distribution with a variance of 0. Since the integral of a normal distribution is constrained to be unity, the mean must go to infinity as the variance approaches zero. This is the Dirac delta. Is this reasonable or am I wandering in the wilderness?
 
Last edited:
Physics news on Phys.org
you're confusing probability distribution and distribution.

http://en.wikipedia.org/wiki/Distribution_(mathematics )

they're probably related cause a lot of the words in that article are in probability articles but not like you think they are.
 
Last edited by a moderator:
Consider a normal distribution with a variance of 0. Since the integral of a normal distribution is constrained to be unity, the mean must go to infinity as the variance approaches zero. This is the Dirac delta. Is this reasonable or am I wandering in the wilderness?
The mean doesn't have to go to infinity. It can stay at zero. In that case the density function has as its "limit" the Dirac delta function at 0. In other words the limit of the probability distribution is a Schwartz distribution.
 
mathman said:
The mean doesn't have to go to infinity. It can stay at zero. In that case the density function has as its "limit" the Dirac delta function at 0. In other words the limit of the probability distribution is a Schwartz distribution.

I don't know much about general distribution theory, but I read that Schwartz "legitimized" the Dirac delta function by redefining it as a functional. In any case, I'm happy the mean can stay at zero. Your description of the Dirac delta as the 'limit' of the density function at 0 is very clear. Thanks mathman.
 
SW VandeCarr said:
Previously I posted a question on the Dirac delta function and was informed it was not a true function, but rather a distribution. However, I have to admit I still did not understand why its integral (neg inf to pos inf) is unity. I've thought about this and came up with the following:

Consider a normal distribution with a variance of 0. Since the integral of a normal distribution is constrained to be unity, the mean must go to infinity as the variance approaches zero. This is the Dirac delta. Is this reasonable or am I wandering in the wilderness?


Yes the idea is okay, but since you cannot consider the dirac-delta as a function, you cannot either interpret the integral in its usual way. Basically, the idea is that the delta can be seen as a limit of a sequence of functions (also called distribution). Typically, that function can be a gaussian (but they are other equally acceptable definitions, in terms of sine for example). A gaussian depends upon x and sigma. If you choose to tends sigma to zero, since the gaussian is normalized (that is, overal area=1), the width tends to zero, the central peak tends to infinity, while everwhere else it tends to zero. Now, if you integrate such a gaussian multiplied by any function, then apply the limit for sigma tending to zero, the value of the function can be considered as a constant upon the withd, so, if the with is centered around zero, you can put the f(0) out of the integral, and because the gaussian is normalize, the integral gives you 1, so it remains just f(0). Hence the definition, at least from a heuristic (physics) point of view.
 
For intuitions about the Dirac Delta, you should think of it as a bell curve with infinitesimal variance (spread). It's still got unit area under the curve, but all that area is concentrated in within an infinitesimal neighborhood of the mean.

EDIT. It seems you are thinking about this more or less correctly. And you're right, that the value at the mean is infinite (the inverse of an infinitesimal).
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K