Why is this matrix symmetric here?

  • Context: Graduate 
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Matrix Symmetric
Click For Summary

Discussion Overview

The discussion revolves around the symmetry of a matrix ##\mathbf{T}## in the context of Lagrangian mechanics, specifically regarding the kinetic energy representation in systems with generalized coordinates and velocities. Participants explore the conditions under which this matrix is symmetric and its implications in the formulation of kinetic energy.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant references a source that describes the Lagrangian in terms of quadratic and linear functions of generalized velocities, questioning why the matrix ##\mathbf{T}## is symmetric.
  • Another participant explains that with moving constraints, the kinetic energy can be expressed in a form that suggests the matrix ##\mathbf{A}## is symmetric, noting that this follows from the expression for particle velocities.
  • There is a repetition of the explanation regarding the kinetic energy form and the symmetry of matrix ##\mathbf{A}##, reinforcing the earlier point about the quadratic form being homogeneous.
  • A participant links to an old thread and references a statement about kinetic energy being a Riemann Metric on Configuration Space, suggesting a geometrical interpretation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the reasons for the symmetry of the matrix ##\mathbf{T}##, with multiple viewpoints and interpretations presented regarding its properties and implications.

Contextual Notes

The discussion includes references to specific mathematical forms and assumptions about the nature of the constraints and velocities, which may not be fully elaborated upon or agreed upon by all participants.

Kashmir
Messages
466
Reaction score
74
Goldstein 3rd Ed, pg 339

"In large classes of problems, it happens that ##L_{2}## is a quadratic function of the generalized velocities and ##L_{1}## is a linear function of the same variables with the following specific functional dependencies:
##L\left(q_{i}, \dot{q}_{i}, t\right)=L_{0}(q, t)+\dot{q}_{i} a_{i}(q, t)+\dot{q}_{i}^{2} T_{i}(q, t)##

where the ##a_{i}^{\prime} s##and the ##T_{i}##'s are functions of the ##q## 's and ##t##.

Under the given assumptions the Lagrangian can be written as##L(q, \dot{q}, t)=L_{0}(q, t)+\tilde{\dot{q}} \mathbf{a}+\frac{1}{2} \tilde{\mathbf{q}} \mathbf{T} \dot{\mathbf{q}}##"

It's then said that ##\mathbf{T}## is symmetric.
Why is it symmetric? Is it because it's always diagonal? The author didn't say that,instead says it's just a n by n square matrix.

Please give me a hint or an answer. Thank you
 
Physics news on Phys.org
With moving (i.e. time-dependent) constraints ##\mathbf{r}_a = \mathbf{r}_a(\mathbf{q},t)##, the kinetic energy is indeed generally of the form ##T = \dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}} + \mathbf{B}^T \dot{\mathbf{q}} + C##, where ##\mathbf{A}##, ##\mathbf{B}## and C are all functions of ##\mathbf{q}## and ##t##.

This follows from the expression ##\dot{\mathbf{r}}_a = \sum_i \dfrac{\partial \mathbf{r}_a}{\partial q^i} \dot{q}^i + \dfrac{\partial \mathbf{r}_a}{\partial t}## for the particle velocities. Using this to write out the kinetic energy ##T = \frac{1}{2} \sum_a m_a \dot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a## of the system, do you see why ##A_{ij} = A_{ji}## (i.e. ##\mathbf{A}## is a symmetric matrix and the quadratic form ##\dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}}## is homogeneous?).
 
  • Like
Likes   Reactions: Kashmir and vanhees71
ergospherical said:
With moving (i.e. time-dependent) constraints ##\mathbf{r}_a = \mathbf{r}_a(\mathbf{q},t)##, the kinetic energy is indeed generally of the form ##T = \dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}} + \mathbf{B}^T \dot{\mathbf{q}} + C##, where ##\mathbf{A}##, ##\mathbf{B}## and C are all functions of ##\mathbf{q}## and ##t##.

This follows from the expression ##\dot{\mathbf{r}}_a = \sum_i \dfrac{\partial \mathbf{r}_a}{\partial q^i} \dot{q}^i + \dfrac{\partial \mathbf{r}_a}{\partial t}## for the particle velocities. Using this to write out the kinetic energy ##T = \frac{1}{2} \sum_a m_a \dot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a## of the system, do you see why ##A_{ij} = A_{ji}## (i.e. ##\mathbf{A}## is a symmetric matrix and the quadratic form ##\dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}}## is homogeneous?).
Thankyou sir.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K