Why is this matrix symmetric here?

  • Context: Graduate 
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Matrix Symmetric
Click For Summary
SUMMARY

The discussion centers on the symmetry of the matrix ##\mathbf{T}## in the context of Lagrangian mechanics, specifically as presented in Goldstein's "Classical Mechanics" (3rd Ed, pg 339). The Lagrangian is expressed as ##L(q, \dot{q}, t)=L_{0}(q, t)+\tilde{\dot{q}} \mathbf{a}+\frac{1}{2} \tilde{\mathbf{q}} \mathbf{T} \dot{\mathbf{q}}##, where ##\mathbf{T}## is identified as a symmetric matrix. The symmetry arises from the quadratic form of kinetic energy, ##T = \dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}}##, which is homogeneous, confirming that ##A_{ij} = A_{ji}##. This symmetry is crucial for understanding the dynamics of systems with moving constraints.

PREREQUISITES
  • Understanding of Lagrangian mechanics and its formulation.
  • Familiarity with quadratic forms in linear algebra.
  • Knowledge of matrix properties, specifically symmetry.
  • Basic concepts of kinetic energy in classical mechanics.
NEXT STEPS
  • Study the derivation of the Lagrangian from kinetic and potential energy expressions.
  • Explore the properties of symmetric matrices in the context of physics.
  • Learn about the implications of Riemann metrics in configuration space.
  • Investigate the role of moving constraints in Lagrangian dynamics.
USEFUL FOR

Students and professionals in physics, particularly those focusing on classical mechanics, Lagrangian dynamics, and mathematical physics. This discussion is beneficial for anyone looking to deepen their understanding of kinetic energy formulations and matrix properties in physical systems.

Kashmir
Messages
466
Reaction score
74
Goldstein 3rd Ed, pg 339

"In large classes of problems, it happens that ##L_{2}## is a quadratic function of the generalized velocities and ##L_{1}## is a linear function of the same variables with the following specific functional dependencies:
##L\left(q_{i}, \dot{q}_{i}, t\right)=L_{0}(q, t)+\dot{q}_{i} a_{i}(q, t)+\dot{q}_{i}^{2} T_{i}(q, t)##

where the ##a_{i}^{\prime} s##and the ##T_{i}##'s are functions of the ##q## 's and ##t##.

Under the given assumptions the Lagrangian can be written as##L(q, \dot{q}, t)=L_{0}(q, t)+\tilde{\dot{q}} \mathbf{a}+\frac{1}{2} \tilde{\mathbf{q}} \mathbf{T} \dot{\mathbf{q}}##"

It's then said that ##\mathbf{T}## is symmetric.
Why is it symmetric? Is it because it's always diagonal? The author didn't say that,instead says it's just a n by n square matrix.

Please give me a hint or an answer. Thank you
 
Physics news on Phys.org
With moving (i.e. time-dependent) constraints ##\mathbf{r}_a = \mathbf{r}_a(\mathbf{q},t)##, the kinetic energy is indeed generally of the form ##T = \dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}} + \mathbf{B}^T \dot{\mathbf{q}} + C##, where ##\mathbf{A}##, ##\mathbf{B}## and C are all functions of ##\mathbf{q}## and ##t##.

This follows from the expression ##\dot{\mathbf{r}}_a = \sum_i \dfrac{\partial \mathbf{r}_a}{\partial q^i} \dot{q}^i + \dfrac{\partial \mathbf{r}_a}{\partial t}## for the particle velocities. Using this to write out the kinetic energy ##T = \frac{1}{2} \sum_a m_a \dot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a## of the system, do you see why ##A_{ij} = A_{ji}## (i.e. ##\mathbf{A}## is a symmetric matrix and the quadratic form ##\dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}}## is homogeneous?).
 
  • Like
Likes   Reactions: Kashmir and vanhees71
ergospherical said:
With moving (i.e. time-dependent) constraints ##\mathbf{r}_a = \mathbf{r}_a(\mathbf{q},t)##, the kinetic energy is indeed generally of the form ##T = \dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}} + \mathbf{B}^T \dot{\mathbf{q}} + C##, where ##\mathbf{A}##, ##\mathbf{B}## and C are all functions of ##\mathbf{q}## and ##t##.

This follows from the expression ##\dot{\mathbf{r}}_a = \sum_i \dfrac{\partial \mathbf{r}_a}{\partial q^i} \dot{q}^i + \dfrac{\partial \mathbf{r}_a}{\partial t}## for the particle velocities. Using this to write out the kinetic energy ##T = \frac{1}{2} \sum_a m_a \dot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a## of the system, do you see why ##A_{ij} = A_{ji}## (i.e. ##\mathbf{A}## is a symmetric matrix and the quadratic form ##\dot{\mathbf{q}}^T \mathbf{A} \dot{\mathbf{q}}## is homogeneous?).
Thankyou sir.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K