Why my random experiment has a log normal distribution?

Click For Summary
SUMMARY

The discussion centers on a simulation created using Scratch that randomly selects six letters from a set (A, B, C, D, E, E) to achieve a specific order (EEDCBA). The results, derived from 100 iterations, unexpectedly displayed a log-normal distribution instead of the anticipated normal distribution with an average of 360. Participants clarified that the output should follow a geometric distribution due to the nature of the trials, where the probability of success is 1/360, and the mean of the distribution is indeed 360, confirming the relationship between the probability and the expected number of iterations.

PREREQUISITES
  • Understanding of Scratch programming for simulations.
  • Knowledge of probability distributions, specifically geometric distribution.
  • Familiarity with Bernoulli trials and their implications in probability.
  • Basic statistical concepts, including mean and probability mass functions (pmf).
NEXT STEPS
  • Study the properties of geometric distribution and its applications in probability theory.
  • Learn about Bernoulli trials and how they relate to discrete random variables.
  • Explore Scratch programming techniques for creating simulations and visualizing data.
  • Review statistical analysis methods to interpret simulation results effectively.
USEFUL FOR

This discussion is beneficial for students and educators in statistics, programmers interested in simulation techniques, and anyone seeking to understand the implications of probability distributions in discrete trials.

musicgold
Messages
303
Reaction score
19
Hi,

I am confused with the results of a seemingly simple simulation that is generating a log normally distributed output. Please see the attached results file.

Simulation: I have built a Scratch program that randomly picks six letters from a group of six letters (A, B, C, D, E & E). The program displays the order in which the letters have been picked. I am interested in finding out how many iterations the program takes to get a specific order of letters (say, EEDCBA).

I repeated this experiment 100 times and I was surprised to see log normally distributed results. I was hoping to see a normal distribution with an average of 360.

Can someone please explain what is going on?

Thanks,
 

Attachments

Physics news on Phys.org
The actual distribution should be geometric with p=1/6^6 (i.e. counting the number of failures before a success).

I guess a smallish sample (size 100) would superficially resemble lognormal.
 
I assume you understand, that you cannot actually get neither lognormal nor normal distribution, as they are continuous, and your r.v. is discrete.

If I understood your description, then your r.v. is just "the number of failures, before first success", where success is getting "EEDCBA" and trials are independent, right? In this case what you should get is the geometric distribution.

P.S. I can't open your excel file, so can't give you details of what it's doing wrong
 
Thanks folks.

For those who are not able to open my excel file, I have attached a text file with my results.

If I understood your description, then your r.v. is just "the number of failures, before first success", where success is getting "EEDCBA" and trials are independent, right?
That is correct.

Also, I got the 360 as follows: Prob of getting E in the first place = 2/6, prob of getting the second E in the second place = 1/5, prob of getting D in the third place = 1/4...and so on.


probability of getting EEDCBA = 2/6 * 1/5* 1/4* 1/3 * 1/2 * 1 = 1/360
How is this number related to the distribution? Is it the mean of the distribution?

Also, can you please point to me a source where I can read more about this? I am not sure why I should get a geometric distribution.
 

Attachments

Last edited:
musicgold said:
Thanks folks.
How is this number related to the distribution? Is it the mean of the distribution?

Also, can you please point to me a source where I can read more about this? I am not sure why I should get a geometric distribution.

p = 1/360 is the probability of success. Look at wikipedia article on geometric distribution: it says "geometric distribution [...] is the probability distribution of the number X of Bernoulli trials needed to get one success". Bernoulli trial means a trial which can have only two outcomes: 1 or 0 (or true/false, success/failure etc).

Also, if p is the probability of success, then 1-p is probability of failure. In order to get (first) success on k-th trial (iteration), you need to fail k-1 times in a row and then have a success, thus P(X=k) = (1-p)^{k-1}p, which is exactly the pmf of geometric distribution.

Also, geometrically distrubuted r.v. with parameter p has mean 1/p. So the average number of iterations should indeed be 360.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K